
The effects of relative delay in networked
games

Tristan Nicholas Hoang Henderson

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

of the

University of London.

Department of Computer Science

University College London

February 2003

NB: this copy differs slightly from the submitted version in that I have removed e-mail

addresses after requests from authors (15 Mar 2017)

Abstract

Games are one of the most popular multiuser applications currently in use on the Internet.

They have become so in spite of the lack of Quality of Service (QoS) guarantees offered by the

current Internet, which are typically believed to be a requirement for delay-sensitive multimedia

applications such as games. Understanding how networked games have become popular is

therefore important for designing applications that can become successful with or without the

presence of QoS guarantees.

One reason for the popularity of games may be the interaction between players in a mul-

tiuser game. It is this interaction that compels users to play a networked game, since without

other players there is little benefit to the networked component of the game. Players may be

willing to tolerate lower QoS if they are able to enjoy a game with other users.

This thesis examines users’ preferences for one QoS parameter, delay, in networked First

Person Shooter (FPS) games. We consider a player’s absolute delay (the delay between a

player and the game server), and their relative delay (the difference between a user’s delay

and that of the other players). We employ controlled and uncontrolled objective and subjective

experiments: monitoring of publicly-available game servers, group experiments, a survey of

game players, and controlling the delay to servers for the FPS game, Half-Life.

We find that users are drawn to game servers where they can interact with a greater number

of players. Delay has a greater effect on a player’s decision to join a game than to leave, and

a player’s tolerance for delay increases with the time that they remain in the game. Although

they believe relative delay to be important, in practice users are more concerned about absolute

than relative delay, and can find it difficult to accurately distinguish their relative delay.

Acknowledgements

Although written in the first person nominative plural personal form (also known as “we”), this

thesis is all my own work. It would never have been finished, however, without the help of

several people, who I acknowledge here.

Saleem Bhatti and Jon Crowcroft have gone beyond the call of duty in providing guidance

and encouragement.

I am grateful to Grenville Armitage for giving me the idea of running my own game

servers. Hopefully we will work together one day! John Andrews was invaluable in helping me

set up said game servers at UCL.

Thanks to Huw Oliver, Erik Geelhoed and Mike Spratt at HP Labs, without whom the

experiments in Chapter 6 would never have taken place, and to Brendan Murphy at Microsoft

Research for his help with the experiments in Chapter 4. Colin Perkins provided access to a host

at ISI East. I must also thank the European Leisure Software Publishers Association (ELSPA)

and the Internet Domain Survey (IDS) for allowing me to use their data.

Thanks to Jörg Widmer, Martin Mauve and Lars Wolf for convincing me that games are a

worthwhile area of research!

Thank you to Angela Sasse and Søren Sørensen for getting me through the UCL PhD

process.

Thanks to Ian Brown, Piers O’Hanlon, Ken Carlberg, Manuel Oliveira, Panos Gevros and

of course the staff of the JB. I might have got the thesis in earlier if not for them, but it wouldn’t

have been half as much fun. . .

Last, but certainly not least, thank you to Vicky.

Note on references

The nature of the networked gaming industry and community means that several of the sources

referred to in this dissertation exist only on the World Wide Web. All Universal Resource Iden-

tifiers (URIs) have been checked, but their longevity cannot be guaranteed. Where appropriate,

the bibliographic references contain a date of citation, as recommended by ISO standard 690-

2 [95], that indicates when the URI of the article in question was checked and found to be

available.

Contents

1 Introduction 12

1.1 Thesis . 17

1.2 Goals and approach . 17

1.3 Outline of dissertation . 18

2 The evolution of networked games 20

2.1 Multiuser networked games and applications 20

2.1.1 Networked Virtual Environments . 20

2.1.2 Military Simulations . 22

2.1.3 Computer-Supported Cooperative Work 22

2.1.4 Networked games . 23

2.2 User requirements for multimedia applications 28

2.2.1 Quality of Service . 28

2.2.2 Group interaction . 30

2.3 Networking techniques . 34

2.3.1 Network architecture . 34

2.3.2 Synchronisation delay . 35

2.3.3 Dead reckoning . 35

2.3.4 Consistency . 36

2.4 Discussion . 37

2.5 Summary . 38

3 Group preferences and Quality of Service for games 40

3.1 Related work . 40

3.1.1 Network analysis . 40

3.1.2 Network performance, congestion control and QoS 41

3.1.3 Delay requirements . 43

Contents 6

3.1.4 Behaviour of game players . 44

3.1.5 Other games research . 45

3.1.6 Discussion . 45

3.2 Approach of this dissertation . 45

3.3 Summary . 48

4 Session-level join-leave behaviour in FPS games 49

4.1 Introduction . 49

4.2 Methodology . 49

4.2.1 Summary of observations . 53

4.3 Session membership . 54

4.3.1 Network externalities . 55

4.4 User duration . 56

4.5 Interarrival times . 60

4.6 Summary . 63

5 User behaviour and delay on FPS game servers 65

5.1 Introduction . 65

5.2 Methodology . 66

5.2.1 Determining unique users . 68

5.2.2 Measuring delay . 69

5.2.3 Measuring relative delay . 71

5.2.4 Inferring user preferences . 72

5.3 The user population . 74

5.4 Joining a server . 79

5.4.1 Relative delay . 83

5.4.2 Number of players . 85

5.5 Staying on a server . 86

5.6 Leaving a server . 88

5.6.1 Number of players . 88

5.6.2 Absolute delay . 88

5.6.3 Relative delay . 91

5.7 Summary . 94

Contents 7

6 The effects of delay on FPS game players 96

6.1 A survey of game players’ perceptions of network conditions 97

6.1.1 Methodology . 97

6.1.2 Results . 97

6.2 Game players’ perceptions of network delay 103

6.2.1 Methodology . 104

6.2.2 Results . 106

6.3 Game players’ perceptions of relative network delay 109

6.3.1 Methodology . 109

6.3.2 Players’ performance under delay . 112

6.3.3 Players’ enjoyment from a game . 114

6.3.4 Detecting delay . 115

6.4 Summary . 117

7 Summary and conclusions 119

7.1 Contributions . 120

7.1.1 Discussion . 121

7.2 Relationship to other work . 123

7.3 Future work . 124

7.3.1 QoS, pricing and congestion control 124

7.3.2 Other games and applications . 126

A ARIMA modelling 128

A.1 Diagnostic checking . 128

B The FPS game Half-Life 129

B.1 Half-Life network protocols . 129

B.2 Half-Life query protocol details . 129

B.2.1 Master server query mechanisms . 129

B.2.2 Server query mechanisms . 130

C Questionnaires 132

C.1 Player survey . 132

C.2 Experimental questionnaires . 134

C.2.1 Single-player experimental questionnaire 134

C.2.2 Multiplayer experimental questionnaire 136

List of Figures

2.1 Client-server network architecture . 21

2.2 Peer-to-peer network architecture . 22

2.3 Quake — a typical FPS game . 26

2.4 Half-Life game server browser . 30

2.5 Inconsistency in gameplay caused by network delay 37

3.1 Average number of servers for different FPS games 47

3.2 Number of game servers over time . 48

4.1 Data gathering setup . 52

4.2 Example QStat output . 52

4.3 Number of users . 54

4.4 Seasonal decomposition of smoothed membership data 55

4.5 Temporal autocorrelation in number of players 56

4.6 ARIMA diagnostics and cumulative periodogram for (1,1,1) × (0,1,1)48

model for a single server . 57

4.7 ARIMA diagnostics and cumulative periodogram for (2,1,1) × (0,1,1)48

model for same single server as Figure 4.6 . 57

4.8 ARIMA diagnostics and cumulative periodogram for (1,1,1) × (0,1,1)48

model for a single server . 58

4.9 ARIMA diagnostics and cumulative periodogram for (2,1,1) × (0,1,1)48

model for same single server as Figure 4.8 . 58

4.10 Duration of user’s game . 58

4.11 Fitting an exponential distribution to user duration data 59

4.12 Number of players versus duration of session 60

4.13 Interarrival times . 60

4.14 Fitting an exponential distribution to interarrival times 61

4.15 Autocorrelation function of interarrival times 62

List of Figures 9

4.16 Log-log complementary plots of interarrival times 62

4.17 Hill estimator for interarrival times . 63

4.18 Number of players versus interarrival time . 64

5.1 Weekly session membership on a Half-Life server 67

5.2 Correlation between application-level and network-level delay measurements . 71

5.3 Location of all observed IP addresses . 75

5.4 Location of “tourist” and “regular” players . 76

5.5 Delay of players sorted by their country of origin 77

5.6 Observed TLDs compared with the IDS . 78

5.7 Distribution of players’ average delay . 80

5.8 Kernel density function of players’ delay . 81

5.9 Players on two servers with differing levels of network delay 82

5.10 Players on two servers with no additional network delay 83

5.11 Relative delay for regular and tourist players 84

5.12 Fussiness versus the number of players on a server 85

5.13 dmax versus the number of players on a server 86

5.14 Players’ average delay versus session duration 87

5.15 Players’ average delay versus session duration where duration ≤ 60 min 87

5.16 Number of players in the last minute of a session subtracted from the number

of players in the rest of session . 89

5.17 Players leaving a server as a result of additional delay 90

5.18 Relative delay effects in the last minute of a player’s session 92

5.19 Players leaving a server as a result of additional relative delay 93

6.1 How long have respondents played networked games 97

6.2 How often do respondents play networked games 98

6.3 How well do the respondents think they play networked games 99

6.4 Do games affect respondents’ expenditure? 99

6.5 Are respondents willing to pay for QoS? . 100

6.6 Do users consider delay when connecting to a server? 101

6.7 Do network problems annoy players? . 101

6.8 Do network problems lead players to leave a game? 102

6.9 Do respondents like relative delay? . 102

6.10 Do respondents prefer relative delay? . 103

List of Figures 10

6.11 Do users check their delay during games? . 104

6.12 Experimental network setup . 105

6.13 Monitoring the effect of network latency in Half-Life — the weapon’s laser

sight (the circled red dot) is calculated server-side 105

6.14 Users’ confidence in distinguishing delay . 108

6.15 Application-level delay in multiplayer experiments 111

6.16 Kills versus delay . 112

6.17 Deaths versus delay . 113

6.18 Kills over deaths versus delay . 114

6.19 In which session did players think they performed the best? 115

6.20 Which session did players think they enjoy the best? 116

List of Tables

2.1 Dates of important games and gaming systems 24

2.2 Types of networked game . 25

2.3 Top ten games sold in the UK and their throughput requirements, 15/05/2002 . 29

3.1 Average number of FreeCiv players . 46

4.1 Observations taken of game servers . 51

4.2 Summary of session-level analysis . 53

5.1 Available servers in Europe and the USA . 79

5.2 Overall delay results . 80

5.3 Relationship between relative delay and session duration 88

6.1 Demographics of participants in single-player experiments 106

6.2 Triangular test results for perception of delay 107

6.3 χ2 values for triangular test of perception of delay 107

6.4 ANOVA test results for perception of delay versus sex, age and experience. . . 108

6.5 Experimental scenarios in multiplayer experiments 110

6.6 Demographics of participants in multi-player experiments 111

6.7 Questions about players’ relative delay . 116

B.1 Half-Life server query variables . 130

Chapter 1

Introduction

The latter half of the 1990s has seen explosive growth in the Internet, in terms of the number

of connected nodes and users. The Internet has evolved from a primarily research-oriented

network to a part of everyday life for millions of people around the world. There has yet to be a

commensurate growth in the number of applications and services, however, and the predominant

uses for the Internet have remained applications which were designed over a decade ago, such

as e-mail and the World Wide Web [75, 146, 145].

It has been argued that this dearth of new applications is due to the best-effort nature of

the Internet. Applications such as streaming audio and video, or multimedia conferencing, have

stringent requirements that cannot be met by a network that cannot guarantee throughput and

delay. The Internet is such a network, due to the finite amount of bandwidth that is available,

and the nature of the Internet Protocol (IP), which is connectionless and offers no admission

control or flow state. For those flows with specific requirements, it is therefore necessary to

provide the ability to differentiate between application flows such that these requirements can

be met. Without this, multimedia real-time applications will be unusable. It is the provisioning

of these applications that has driven efforts such as IntServ [32] and DiffServ [25] to develop

methods to enable Quality of Service (QoS) in the Internet.

One real-time multimedia application that has become popular, in spite of the lack of

network QoS guarantees offered by today’s Internet, is the multiplayer networked game. Games

contribute to an increasingly large proportion of network traffic [134], and the online games

industry is predicted to be worth US$5 billion by 2004 [53]. Networked gaming is considered

a bona fide sport by some, and international gaming tournaments have made it possible to be

a professional game player [47]. Network usage by game players is likely to increase further,

as the types of end-systems capable of playing networked games continue to proliferate. In

addition to the existing personal computers (PCs) that are capable of playing networked games,

games consoles such as the Sega Dreamcast [172], Microsoft Xbox [138] and Sony PlayStation

13

2 [181] have begun to feature Ethernet and telephone connectors, and the games designed for

these appliances also include networked capabilities. Digital set-top boxes for television such as

those employed by Sky Digital [178] also feature multiuser gaming applications. These games

consoles and set-top boxes are mass-market, single-purpose devices, and are generally priced

well below the cost of a PC. As such, many more households have access to a console or set-top

box as opposed to a PC, and so the introduction of these new networked devices can be expected

to increase the number of online game players.

The success of games is even more intriguing, because they are one of the most obvious

applications to require a higher level of network QoS. Certainly, game players are already will-

ing to pay extra to get an improvement in their playing experience, as evidenced by specialist

gaming hardware such as joysticks, mice, mousepads and even furniture. Many game play-

ers are willing to spend much more on computing hardware than the average computer user,

and specialist manufacturers have emerged to take advantage of this [14]. Game publishers

have also proposed new methods of capitalising on players’ willingness to pay, for instance by

charging players each time they play a game via a network, rather than the current practice of

charging a one-off fee for the software [153, 136]; by charging a fee per game with the op-

portunity for players to win money or prizes [188]; by charging to allow players to advance

through a game more quickly [187]; or even by paid product placement within a game’s virtual

world [22]. More interesting, from a networking point of view, is the existence of modems

marketed as being specially optimised for games [1], and software designed to determine net-

work characteristics of potential game servers such as delay [72]. These developments indicate

that game players are interested in network QoS, and would be willing to pay for the ability

to improve it. Yet, QoS is evidently not a huge barrier to game deployment, since millions of

copies of networked games are already being sold and played.

The popularity of games as a group application merits their study, and has potential benefits

in various areas. One of the perennial reasons given for the lack of multicast deployment,

even after over a decade of research, is the lack of appropriate applications. Internet Service

Providers (ISPs) will not enable multicast in their networks, until their customers demand it.

Their customers will not desire multicast, or perhaps even be unaware of its existence, until there

are compelling applications that require it. By the same token, however, application authors

may be reluctant to design multicast applications until multicast is ubiquitous. One approach to

resolving this “chicken and egg” problem may be to examine the currently-available multiuser

applications, such as games.

14

It is important to understand the network QoS requirements for games, given their popu-

larity in spite of the lack of network QoS guarantees. There is a large body of work analysing

the QoS requirements for other networked applications. The first experiments with voice over a

packet network took place as early as 1973, leading to the Network Voice Protocol [45]. The re-

quirements for voice traffic are now well-understood, and the subject of international standards

such as ITU-T G.114 [98]. Networked video has also been the study of much research, and

there are standards for video conferencing, e.g. H.323 [96]. Games, on the other hand, have re-

ceived a disproportionately small amount of interest from the networking research community

or standards bodies.

When considering network QoS, there are several parameters that are usually considered,

such as throughput, loss, and jitter. Of these, network delay, or “lag” as it is sometimes re-

ferred to in game-playing circles, is the most commonly-cited concern of game players. There

are websites dedicated to users’ complaints about delay and possible remedies for high la-

tency [111]. In online discussion forums such as Slashdot [179], there are many statements

from users such as:

• “150 [ms] is not tolerable.”

• “no way anybody can play quake competitivly [sic] with a ping over 200ms.”

• “In Q3 [Quake III] I can’t play with a ping over 90 [ms]”

• “I find a ping of more than 50 [ms] intolerable. I won’t play a game at 100 [ms] or more.”

It would thus appear that users believe the delay bound for real-time multiplayer games to be

very low indeed. Yet the prima facie evidence is that users are playing games even when these

low delay requirements cannot be met. Why is this?

The Internet is usually portrayed as a “tragedy of the commons” [80], with greedy and

selfish users all competing for the same shared scarce network resource, resulting in overcon-

sumption and little network capacity being available for anyone [126]. This might be true if

the individual users are all unrelated, for instance where they are all using different, single-

user, applications. Does the assumption of selfishness necessarily hold, however, for group

applications? If the members of a group shared a common network bottleneck, might these

members consider the effects of their actions on each other? Might they be less selfish towards

users with whom they are interacting? Games are inherently a social activity — Shelley de-

fines a game as “a series of interesting decisions in a competitive environment” [173]. Whilst

a computer-generated set of opponents can potentially provide a competitive environment, arti-

15

ficial intelligence has not evolved to the stage where a widely-available personal computer can

appropriately simulate human judgement. Networked computer games thus generally entail in-

teraction with other users. Perhaps it is this interaction that can explain the popularity of games

where other multimedia applications have failed.

If we accept that users in a game will consider the other players of the game, then perhaps

they will consider each others’ network conditions. Delay has been mentioned as a primary

concern of players — the client-server network topology of most networked games means that

the network delay is that between the client, or player, and the host which is running the game

server daemon. Consider the following two scenarios:

• Scenario 1a: Three users are connected to a game server. Two users are on the same

local area network as the game server, and as a result they each have a low round-trip

time (RTT) of 10ms between them and the server. The third user, however, is connected

via a high-latency wide-area network link, and there is a bottleneck between this client

and the game server, resulting in an RTT of 300ms.

10ms

10ms

300ms
Bottleneck

• Scenario 2a: Three users are connected to a game server. There is a bottleneck near the

server — this could comprise network congestion near the server, or perhaps the server’s

CPU is heavily loaded, resulting in a delay in processing time. For the purposes of this

discussion, the causes of delay are not so important as the effects — that is, the type of

gameplay that the user experiences as a result of the delay. In this scenario, all the users

have an RTT of 300ms, and consequently experience degraded gameplay.

16

300ms

300ms

Bottleneck

300ms

In Scenario 1a, two of the users have low delay, but have chosen to play with another user

with a much higher delay than themselves. We can assume that they want to play with this

high-delay user, and vice versa. But the nature of the game will change due to their differing

delay characteristics. The low-delay players may be able to respond quicker than the high-delay

user, since they may receive information from the server sooner, which could be necessary to

perform well in the game. This imbalance may diminish the enjoyment that all the players

receive from the game, as the competitive environment which defines the game is no longer

truly competitive, but biased towards some players.

In Scenario 2a, although the average delay experienced by the players is higher, the com-

petitive environment, at least with respect to delay, is maintained — there is a level playing

field. Might users prefer this level playing field, albeit with a higher response time? There

is reason to believe that this might be the case; returning to the previously-mentioned online

discussion forum [179], we find comments from users such as:

• “I liked it better when it was a more even ping spread.”

• “I don’t find ping ever to be a problem. The issue is the relative pings. If everyone was

put to the same [dis]advantage pings wouldn’t matter.”

This thesis aims to contribute to our understanding of multiuser networked computer

games by carrying out an analysis of a particular genre of game, the first person shooter (FPS),

in which network conditions such as delay could be tested. The following questions are exam-

ined:

1.1. Thesis 17

• Q1 Do players in a multiplayer game consider the presence of other players when choos-

ing where and when to play?

• Q2 Do players in a multiplayer game consider the network conditions of other players

when choosing where and when to play?

1.1 Thesis

We have proposed that users may potentially consider other game players and their network

conditions when choosing to play a multiplayer networked game. As delay is perhaps the

most important QoS parameter in a game, we concentrate on this. Other parameters such as

bandwidth are out of scope of this work (the reasoning for this is detailed in Chapter 2). We

offer the following thesis:

Users prefer similar relative delay, rather than minimal individual delay, in

networked games, and will self-organise with respect to the other users in a

game to achieve this.

1.2 Goals and approach

This dissertation attempts to demonstrate that users consider the network latency of other users

on a game server when playing a multiplayer networked game. We wish to answer the questions

listed above, Q1 and Q2. In order to do so, our primary approach is to analyse “real” users, that

is, players of existing games, using existing game server software. While the development of a

custom game for research purposes has many benefits, such a game will never be as polished

or finished as a commercial game, since commercially-produced games typically have a much

larger team of developers than a Ph.D project. The user experience might be different for a game

developed for research, since part of the player’s experience comes from the detailed graphics,

sounds and so on, which are present in a commercial game. Moreover, without this additional

level of completeness, the potential number of users of a game developed for research will be

much lower than that of a commercial game, as the game may appear less attractive.

To examine Q1, we monitor users on a variety of game servers. There are thousands

of game servers accessible via the Internet at any given time. By analysing the session-level

characteristics of users on these servers, we develop a model for session-level user behaviour.

Using this model, we can examine the relationship between the number of users on a server,

and the decision of other users to join or leave that server. This can be seen as an uncontrolled

objective methodology.

1.3. Outline of dissertation 18

To examine Q2, we run our own game servers. Monitoring publicly-available servers ne-

cessitates a lower resolution of data, due to the difficulties of retrieving and collecting data from

a disparate set of distantly-connected hosts. By using our own servers, we can conduct detailed

analysis of the players on the server. It also allows the manipulation of network conditions by

making adjustments at the network packet level to communications with client systems. This

can be seen as an controlled objective methodology.

We also carry out subjective measurements. A questionnaire survey of game players is

carried out — an uncontrolled subjective study. Finally, a controlled subjective methodology is

used: human factors experiments involving users’ perceptions of absolute and relative levels of

network delay in a game scenario.

1.3 Outline of dissertation

In Chapters 2 and 3 of this dissertation we examine the motivation and the context of this work,

and examine related work and the state of the art:

• In Chapter 2, we examine the evolution of networked games, as well as similar appli-

cations such as military simulations. The most common types of networked game are

described. We outline the ways in which delay can affect a game-playing experience, and

the methods used by games to compensate for network delay. Some relevant economic

theory is considered to explain why users might consider other users when interacting in

a group application such as a game.

• In Chapter 3, we consider related work, including network analyses of games, resource

management schemes for games, and studies of user preferences for delay in multime-

dia applications. We outline the game which is the focus of this dissertation, and the

reasoning for choosing this particular game.

In Chapters 4, 5 and 6, we document the analysis and work that has been carried out.

• In Chapter 4, we demonstrate that networked games exhibit network externalities —

that users in a game consider the existence of the other users in the game when choosing

to connect to a game server.

• In Chapter 5, we examine the network delay characteristics of users on a publicly-

available game server. By passively monitoring the delay of players connecting to the

server, and by inserting additional delay into players’ flows, user preferences about delay

are inferred and explained in the context of the game itself.

1.3. Outline of dissertation 19

• In Chapter 6, we examine game players’ preferences and reactions towards network

delay. Using a questionnaire and laboratory experiments, we consider the performance

of FPS game players under different levels of network delay, to see what levels of delay

players notice, respond to, and prefer.

Finally, in Chapter 7, we conclude the dissertation with a summary of the main contri-

butions of this research, and discusses the potential research that could be carried out in the

future.

Chapter 2

The evolution of networked games

In this chapter, we consider the way that networked games are evolving and what this will mean

for the use and provisioning of networked games in the future. We provide a short history

of networked gaming, and the other applications, such as military simulations, which have

contributed to the development of networked multiplayer games. We move on to discuss some

of the QoS requirements for games, and the networking techniques that games developers use

to deal with problems in the network. Finally, we discuss how the interaction between multiple

users may affect the level of QoS required by an application, using examples and theory from

economics and sociology.

2.1 Multiuser networked games and applications

This section describes the evolution of multiuser networked games, from the earliest computer

games of the 1950s and 1960s to the large-scale virtual worlds of today. The most popular

different types of networked games are described. Networked games share features with other

networked applications, and these related applications are discussed.

2.1.1 Networked Virtual Environments

Networked games are a subset of the genre of applications known as Networked Virtual En-

vironments. An NVE is defined as “a software system in which multiple users interact with

each other in real-time, even though those users may be located around the world” [177]. Be-

fore discussing networked games, it is useful to describe the characteristics, in particular the

communication models, of NVEs.

Singhal [177] states that an NVE is distinguished by five features:

1. A shared sense of space

2. A shared sense of presence

3. A shared sense of time

2.1. Multiuser networked games and applications 21

4. A way to communicate

5. A way to share

The first three features can be viewed as the senses that an NVE creates, whereas the latter

two features are the mechanisms that enable these senses.

An NVE generally comprises three components: a database representing the shared virtual

world, a communications substrate, and a set of end devices on which to display the contents

of the world. Users, or players [26], can manipulate the entities in the world, and in doing

so generate events. For most NVEs, the virtual world is three-dimensional, and players are

responsible for controlling characters or avatars and interacting with other entities in the world.

The purpose of the communications substrate is to keep all of the users aware of the current

state of the world.

NVEs use one, or a combination [70], of two network topologies: client-server, e.g.

MASSIVE [76], or peer-to-peer, e.g. DIVE [67].

Figure 2.1: Client-server network architecture

In a client-server architecture (Figure 2.1), one host acts as a server. This server is respon-

sible for maintaining the database of client state and thus the state of the virtual world. Users

who wish to participate in the NVE connect, usually via unicast, to this server. All network

messages between the players are transmitted to the server, and the server then propagates the

messages to all the other players. A client may also exist on the same host as the server, in

which case the server is referred to as a non-dedicated server.

2.1. Multiuser networked games and applications 22

Figure 2.2: Peer-to-peer network architecture

In a peer-to-peer architecture (Figure 2.2), there is no dedicated server. The database is

fully distributed amongst all the participants, and all the players are responsible for keeping

track of the state of the world. Messages are sent from each player to all the other players.

2.1.2 Military Simulations

One of the most common NVEs is the military simulation. SIMNET [5] was designed for train-

ing tank operators. It used a distributed peer-to-peer architecture, and all of the objects would

broadcast events to all the other participants. Distributed Interactive Simulation (DIS) [158] is a

formalisation of the SIMNET protocols, and has been standardised by the IEEE [92]. DIS was

designed to be able to simulate many military tasks, such as training operators of tanks, aircraft

and ships, and multiple types of vehicles can participate in the same simulation. The state of

entities and events is transmitted between participants using Protocol Data Units (PDUs).

Current military simulation research revolves around the High Level Architecture (HLA),

which is also an IEEE standard [93]. HLA does not specify any particular technology, but

instead provides a generalised architecture for distributed simulation. HLA is designed so that

it could be used in non-military simulations as well.

2.1.3 Computer-Supported Cooperative Work

Computer-Supported Cooperative Work (CSCW) is an area of research defined as “an endeavor

to understand the nature and requirements of cooperative work with the objective of designing

computer-based technologies for cooperative work arrangements” [171]. Schmidt and Bannon

go on to define cooperative work as that where “people engage in cooperative work when they

2.1. Multiuser networked games and applications 23

are mutually dependent in their work and therefore are required to cooperate in order to get the

work done”. In a loose sense, then, a game could be viewed as a form of cooperative work, since

if the other players do not play, the game cannot be played, and need not exist. On the other

hand, a game is a competitive environment, where players are generally aiming to defeat their

fellow participants. The nature of the task is not collaborative, and this might create differences

in behaviour between users of these two types of applications. This has been shown to occur in

computer games when players are asked to cooperate, or to compete [7].

Despite this difference in tasks, CSCW and games are closely related. CSCW can encom-

pass such tools as audio- and video-conferencing, shared whiteboards, e-mail, NVEs, and many

other applications, all of which are commonly identified in CSCW terminology as groupware.

2.1.4 Networked games

The most popular form of NVE is the multiplayer game. These have existed for as long as the

computer game genre itself. Table 2.1 lists some of the important multiplayer networked games

that are mentioned in this section.

In 1958 William Higinbotham created what is generally accepted [8, 3] as the world’s

first computer game. Tennis for Two ran on a dedicated analog computer that Higinbotham built

from spare parts in his place of employment, the Brookhaven National Laboratory in New York.

As its name implies, the game was for two players — a ball was displayed on an oscilloscope’s

screen, and players turned a knob and pushed a button to move and hit the ball.

In 1961, Steve Russell wrote the game Spacewar for the PDP-1 computer located at

MIT [121]. This was a space simulation where players controlled spaceships, and the ob-

ject of the game was to shoot at and destroy the other ships. Spacewar was also a multiplayer

game, designed for two players. In 1969, Rick Blomme ported Spacewar to the Xerox PLATO

time-sharing system. The two players could now play on remote terminals, and Spacewar thus

became the first multiplayer networked game.

In 1978 Roy Trubshaw and Richard Bartle created the first MUD (Multi-User Dun-

geon) [18]. This was one of the first games to feature a shared virtual environment in the

form of a database, in which multiple players could simultaneously interact with each other,

as well as with the world itself. Players remotely logged into a DECsystem-10 computer that

was located at the University of Essex. The objective of the game was to accumulate points,

by picking up objects and treasure, or by killing the other players. Users could also add to the

database, thus augmenting the environment, via a programming language.

From the original MUD, networked multiplayer games have since developed into three

main categories: the First Person Shooter (FPS), the Real-Time Strategy Game (RTS) and

2.1. Multiuser networked games and applications 24

Date Game or System

1958 Tennis For Two — the first computer game

1961 original Spacewar

1969 multiplayer Spacewar — the first multiplayer networked game

1974 Maze — the first FPS game

1979 MUD 1 — Multi-User Dungeon

1985 Amaze

1985 Dogfight — multicast flight game for SGI workstations

1987 MIDI Maze — a multiplayer FPS using MIDI for networking

1992 Castle Wolfenstein 3-D

1993 Doom — the first popular networked FPS game

1994 Doom II

1995 CivNet — one of the first “Massive” MMORPGs

1996 Quake — the first popular client-server FPS game

1997 Quake II

1998 Diablo II

1998 Half-Life — the subject of this dissertation

1998 MiMaze — multicast distributed game

1998 Sega Dreamcast - games console with modem for playing MMORPGs

1999 Unreal: Tournament

1999 Quake III Arena

2000 Sony Playstation 2

2001 Microsoft Xbox — first games console with built-in Ethernet

Table 2.1: Dates of important games and gaming systems

2.1. Multiuser networked games and applications 25

FPS RTS MMORPG non-real-

time

Architecture Client-server Client-server /

peer-to-peer

Client-server Peer-to-peer

Number of servers High Low Low None

Players per server Low Low High —

Persistence of world Short-lived Short-lived Long-lived —

Examples Quake, Half-

Life

Starcraft, Age

of Empires

Everquest,

Ultima

Chess

Table 2.2: Types of networked game

the Massively Multiplayer Online Role-Playing Game (MMORPG). Williams attributes the

dearth of game genres to Hotelling’s theory of centrality and homogenisation in markets [89]:

“as hit titles generate interest in a new game format, competitors copy the format, predictably

more eager to split the profits for a sure thing than to risk the failure of a more innovative

format that might only appeal to some smaller group” [193]. Thus, we find that the FPS, RTS

and MMORPG genres account for the majority of networked games. In addition, there are

a number of non-real-time games that are played across the Internet, such as chess — being

non-real-time, they have quite different network characteristics and are determined to be out

of the scope of this thesis. The main differences between these types of game are outlined in

Table 2.2.

The MMORPG can be seen as the evolution of the graphical MUDs and virtual worlds that

developed during the 1970s and 1980s. Most commercial MMORPGs use a client-server archi-

tecture — the virtual world is controlled by a server, and players connect to this server in order

to play the game. Typically there are a very small number of servers, each of which services a

large number of players. For instance, the Sony MMORPG Everquest features 400,000 regular

users, each playing for an average of 20 hours a week, all serviced by a cluster of servers in

California [60], whilst the Korean MMORPG Lineage claims that four million users play on its

servers, each of which can service 150,000 concurrent users [114].

The typical task in an MMORPG is to build up a character or set of characters, collecting

knowledge, weapons, money, property, etc. through interaction with other characters, such as

talking or fighting, and through quests for specific goals. It can take many months for a player to

build a desirable character, and secondary markets have developed where players sell characters

2.1. Multiuser networked games and applications 26

Figure 2.3: Quake — a typical FPS game

to each other for physical money [168]. With hundreds of thousands of players in the virtual

world, the virtual economy of that world can grow quite large [36], and a priority for game

designers is to ensure that this economy does not collapse [176].

The FPS game is believed to have originated in 1974, when Dave Lebling and Greg

Thompson developed the game Maze. FPS games are so-called because the camera, or view-

point, of the player, is through the eyes of the character that they are playing in the game;

in other words, a first person viewpoint. Each player is responsible for controlling a single

character. Other defining characteristics of the FPS genre include the exploration of a three-

dimensional virtual world which is shared amongst all the players in the game, and a simple

objective — shooting and destroying objects. A screenshot from a typical FPS game is shown

in Figure 2.3. Maze used a client-server architecture — clients ran on Imlac PDS-1s, whilst the

server ran on a PDP-10.

Amaze [21] was one of the first multiplayer shooting games to arise from the research

community. Not strictly an FPS game (the viewpoint was from above the character), Amaze

featured players negotiating a monster through a maze, shooting at the other monsters. The

game was designed to run on the V distributed system [40] and was peer-to-peer — each player

sent its location and state to each of the other players on the network.

2.1. Multiuser networked games and applications 27

In 1993 id Software released Doom, which was one of the first multiplayer FPS games for

personal computers (PCs). Up to four players could play over a LAN. Each player connected to

each of the other players in a peer-to-peer topology using IPX (Internetwork Packet eXchange)

from Novell, a connectionless network protocol. An entity’s position and state was broadcast

by each player using packets of a fixed (495 byte) size. Doom was very successful, selling over

a million copies [113] and soon became the scourge of network administrators everywhere [38]

due to its broadcast nature and the lack of any congestion control or data-reduction mecha-

nisms — the messages created by a four-player game could swamp an office’s LAN. Moreover,

the networking model used in Doom created problems for the players. The use of a lockstep

mechanism, whereby players have to wait for all the other players to respond before the game’s

clock can advance, meant that the speed of the game was determined by the slowest responding

machine.

Doom spawned many sequels and derivative games — Doom II, Ultimate Doom, Final

Doom and so on, all of which had similar gameplay and networking characteristics to the orig-

inal version of Doom. In 1996, however, id Software released its next generation of FPS game,

Quake. Quake abandoned the broadcast network model of its predecessors and introduced a

client-server architecture. All of the network communication used unicast UDP.

Quake has spawned two successors, Quake II, Quake III: Arena, which share similar net-

work characteristics to the original Quake. Additionally, Valve Software licensed the Quake II

game engine from id Software to develop their own FPS game Half-Life.

One of the most popular FPS games of recent years that is not based on id Software’s code

has been Epic Games’ Unreal Tournament. This game is very similar to the Quake-based FPS

games, with users shooting at each other in a shared virtual environment. Multiplayer gaming

is available via a UDP-based network protocol which is similar to that of Quake. Another FPS

game of note is Bungie Software’s Halo. This was one of the main software titles used to launch

the Microsoft Xbox games console.

The RTS game genre evolved from the tabletop war and strategy simulation games. RTS

games typically involve controlling a large number of entities, such as an army. Unlike the

relatively simple tasks of an FPS game, an RTS game requires the player to devise strategies

to look after these entities and to complete tasks such as defeating other armies, or building

successful economic communities. Some of the most popular RTS games include StarCraft,

Settlers and Age of Empires. Most RTS games involve a small number of players, and unlike

the single central MMORPG servers, the server for an RTS game usually runs on one of the

players’ hosts.

2.2. User requirements for multimedia applications 28

Games are fast becoming one of the most popular real-time networked applications on the

Internet today. McCreary and Claffy [134] study 10 months worth of traffic at a major Inter-

net peering point, and find that games account for at least1 14 of the top 25 UDP applications

that traverse the exchange. The most popular networked games sell millions of copies — Mi-

crosoft’s Age of Empires sold 6 million copies, and id Software has sold upwards of 8 million

FPS games [113]. Wireless games are already a popular mobile application [100], and some

analysts predict that wireless games will be one of the biggest sources of revenue for future gen-

erations of mobile phone networks [52], with one report projecting that hundreds of millions of

people will play such games within the next five years [54].

The popularity of some of these networked games has led to network problems. The

publishers and server operators of many of the large MMORPGs are often taken by surprise by

the demand for their games, and it often takes several months for sufficient server capacity to be

provided [169]. This may be due in part to the fact that games developers rarely give networking

a high priority — customer service is considered more of a concern than networking by some

developers [56]. In spite of these failings, players are still keen to access these virtual worlds.

2.2 User requirements for multimedia applications

We have already mentioned how games have become a popular networked application, in spite

of the lack of QoS guarantees available from the current Internet. To understand why QoS

guarantees are important for real-time applications such as games, it is necessary to examine

the QoS requirements for these applications.

2.2.1 Quality of Service

Mathy et al. [129] list the five QoS parameters which are typically applied to group multimedia

applications:

• throughput — the minimum data rate

• transit delay — the elapsed time between a data message being emitted from a sender

and consumed by a receiver

• delay jitter — the maximum variation allowed in delay

• error rate — the ratio of incorrectly-received or lost data to sent data

• degree of reliability — the minimum number of members of the group that must receive

each item of data

1five applications were not identified

2.2. User requirements for multimedia applications 29

Sales rank Title Advertised throughput

requirements

1 The Sims: On Holiday 28.8 kbps

2 Star Wars: Jedi Knight II 56 kbps

3 Medal of Honour 33.6 kbps

4 Dungeon Siege 56 kbps

5 FIFA 2002 World Cup 56 kbps

6 The Sims 28.8 kbps

7 The Sims: Hot Date 28.8 kbps

8 Championship Manager: Season 01/02 LAN

9 Half-Life: Generations 28.8 kbps

10 Zoo Tycoon N/A

Table 2.3: Top ten games sold in the UK and their throughput requirements, 15/05/2002

Different applications will have different requirements for each of these parameters — for

instance, a video conference might require low jitter, but tolerate a high level of loss, whereas a

shared whiteboard might require no loss, but tolerate low bandwidth.

Throughput is currently not a major factor in the user experience of a networked game

player. Many game players connect to the Internet using dialup modems. As such, most of

the existing commercially-available games have been designed for these users, and are thus

capable of operating over very low-bandwidth links such as a modem connection. Table 2.3

shows the network requirements, as advertised by the respective games publishers, for the top

ten games sold in the UK for the week ending 15/05/2002 [62]. Nine of the games offer a

networked multiplayer option, and only one of these requires Ethernet connectivity. Throughput

is therefore not a large factor in current networked games, although with the introduction of

broadband DSL and cable modems, it might become so in the future.

Jitter, or the variation in delay over time, is a potential problem for game players. Obtain-

ing an accurate view of the effects of jitter, however, is difficult, due to the overhead of taking

large-scale detailed measurements of jitter. As we will explain in Chapter 5, we required a sys-

tem for passively monitoring game players. Such a passive monitoring system cannot involve

the installation of additional software at the client. Accurate jitter estimation, however, requires

measurements on the order of milliseconds [118], and to do so without the installation of addi-

tional client software would involve a large amount of network probing. It would therefore be

2.2. User requirements for multimedia applications 30

Figure 2.4: Half-Life game server browser

very difficult to measure jitter in a passive measurement system, since the addition of this level

of measurement traffic might affect the network being measured, especially if the users being

measured are on low-bandwidth links.

Several researchers assert that delay is the most important parameter of performance for a

networked multimedia application [51, 161, 163], and in particular for games [41, 10]. Com-

plaints about delay by game players have already been discussed, and the importance of delay,

perhaps as a result, has been incorporated into game design — in an FPS game, the server

browser which helps a user to choose between a set of potential game servers displays the delay

between the user and a server, but not the loss or jitter (in Figure 2.4, the circled column marked

“Net Spd” is intended to provide an indication of network delay between the player and game

server).

2.2.2 Group interaction

Typically, in a QoS-enabled network, each network user or application declares what will be

required from the network for that application’s traffic. To some extent, these requirements

can be made on a technical basis — the type of application, the user’s hardware and software

constraints, and so on. The requirements can also be made on the basis of the preferences

of the user — a user who values a particular video stream highly, for instance their favourite

2.2. User requirements for multimedia applications 31

TV show, might pay more to specify a higher throughput and hence video quality, then for a

video stream in which they only have a passing interest. Having received the requirements,

the network can then determine whether or not these can be met, and perhaps deny the user

admission to the network on this basis. A network provider may choose to offer a Service Level

Agreement (SLA) to its customers, so as to provide some assurance to the users that any critical

QoS requirements will be met.

For single-user applications, each individual user may choose to determine their appropri-

ate level of QoS and select a QoS class or level accordingly. This is generally expected to be

the case, even if the individual users are related, for instance if they are using a common appli-

cation. Although the early multicast QoS work required that all members of a multicast group

receive the same level of QoS, layered multicast techniques, such as Receiver-driven Layered

Multicast (RLM) [132] or Receiver-driven Layered Congestion control (RLC) [167], evolved

to allow individual group members to choose their own level of QoS. These mechanisms are

designed for heterogeneous network conditions, rather than heterogeneous user preferences —

it is assumed that a group member will allow an application to use as much of the network

resource as possible.

Assuming that users act according to their own individual preferences is common in the

social sciences. Economists, for instance, assume that users, or agents, act in a rational manner.

As formalised by von Neumann and Morgenstern [190], expected utility theory holds that peo-

ples’ preferences for potential expected outcomes can be ordered in a utility function. Rational

man is out to maximise his individual utility, and given the choice between two outcomes, will

choose the one which gives them the most benefit. Members of a group, therefore, would be

unlikely to consider the other members of the group when choosing their level of QoS, since

each member would choose the level which satisfies them the most.

How realistic is the assumption of a purely utility-maximising user? Is a member of a

group going to be completely selfish, ignoring the presence of the other group members, grab-

bing as much of the finite network resource as possible, perhaps even at the expense of these

other members? There are several reasons to be wary of accepting the rationality assumption at

face value. Firstly, one theory might not necessarily be able to explain all that we observe in a

real-world setting. As John Milnor states:

“no simple mathematical theory can provide a complete answer, since the psychol-

ogy of the players and the mechanism of their interaction may be crucial to a more

precise understanding” [140].

2.2. User requirements for multimedia applications 32

Although Milnor is referring to the players in a game-theoretic system, the same holds for

any human interaction. It might therefore be beneficial to examine (networked) game players in

a real-world environment, to see whether they do in fact act in accordance with expected utility

theory.

There is also reason to believe that users in a group environment might act differently

to a set of completely independent users, irrespective of differences between theory and the

real world. Users of a network, or users of a certain product who can be seen as forming a

network, gain mutual benefit from sharing the network. An additional user joining the network

increases the value for all users. For instance, a telephone network is useless unless there are

other telephone users to which one can make a telephone call. Each additional telephone user

adds to the usefulness of the network for all of the other users. Indeed, unless the network

reaches a sufficient number of users, that is, a “critical mass point”, the network might never

reach a stable equilibrium and instead collapse [59].

The thesis that is being examined here is that users prefer a group level of delay, rather

than simply choosing to maximise their own performance, for instance by always choosing the

server which has the lowest latency between the server and their client. The enjoyment, or the

utility, that a game player receives, is therefore dependent on the network conditions that the

other members of the group are experiencing.

It is well-known that the value of a group activity to an individual participant may be

related to the number of participants in that group. This has been informally described by

engineers as Metcalfe’s Law (the value of a network is proportional to n2, where n is the number

of users [137]), or more recently by David Reed as the Group-Forming Law (the value of the

Internet is proportional to 2n [164]). Economists, however, generally refer to these effects as

positive consumption or network externalities [149]. For example, Katz and Shapiro define

network externalities as:

“products for which the utility that a user derives from consumption of the good

increases with the number of other agents consuming the good.” [107]

Network externalities have most commonly been studied in terms of standardisation and

compatibility, e.g., the take-up and acceptance of fax machines [59], or the video games console

market [71]. They are not limited to closed networks, and Henriet and Moulin [86] present a

cost allocation scheme for open networks where users share costs according to the network ex-

ternalities that are accrued. Social networks may also exhibit network externalities, for instance

in the academic community [64].

2.2. User requirements for multimedia applications 33

One might expect that multiplayer games exhibit network externalities. The purpose of a

networked multiplayer game is to participate with other people; if a user wishes to play against

electronic opponents there would be less need for the networked aspect of the game (unless,

for example, a user wished to play against a far more powerful computer such as the chess

matches between Garry Kasparov and IBM supercomputers [90]). In general, however, it is

reasonable to assume that a given participant in a networked game is taking part because they

wish to interact with other remote, human users, and therefore, that their utility is derived, to

some extent, from the existence and number of these other users.

Network externalities can explain why users choose to play games in a group, since the

value of the game is partly dependent on the existence of the other players. They do not,

however, explain why a user might consider the preferences and conditions of the other users.

Given the choice between a set of servers, will the rational game player always choose the server

to which they are best-connected, or will they look at the other players and perhaps choose what

is seemingly a suboptimal server, in terms of network conditions?

An economic explanation for why users may seem to behave irrationally towards others is

not a new concept. In 1759 Adam Smith published The Theory of the Moral Sentiments, which

begins:

“How selfish soever man may be supposed, there are evidently some principles in

his nature, which interest him in the fortune of others, and render their happiness

necessary to him, though he derives nothing from it except the pleasure of seeing

it.” [180]

In 1950 Leibenstein [117] described “bandwagon effects”, where the demand for a good

may increase because people copy each other in consuming a good, as new consumers desire

to be associated with the group of original consumers. Perhaps game players might prefer to

play on popular game servers, despite inferior network conditions, because they are following

the crowd?

On the other hand, Postelwaite [156] suggests that the desire to have a favourable position

in relation to others is part of human genetic programming, since animals similar to humans,

such as apes and chimpanzees, have hierarchical social structures, where the top-ranked mem-

bers receive favourable treatment compared with those lower down the scale. Those who jostle

for a higher relative ranking are more likely to survive, and so natural selection means that we

may have evolved to be concerned with our position in a group. If so, game players might prefer

better-connected servers, whereby they can be the best-connected in the group.

2.3. Networking techniques 34

Both of these considerations are part of what economists refer to as interdependent pref-

erences. Interdependent preferences were first examined in 1949 by Duesenberry [58]. He

recognised that a “real understanding of the problem of consumer behavior must begin with a

full recognition of the social character of consumption patterns”. Classical theories about ratio-

nal consumers can describe human desires, but cannot explain how these desires come about.

For Duesenberry, self-esteem and social status lead consumers to look at the preferences at

consumption patterns of others.

Since the initial publication of Duesenberry’s thesis, interdependent preferences have been

observed by several economists in practice, and have been used to explain why people give

to charity [9], to help determine the number of hours that people in a group are willing to

work [27, 13], and to explain why people might be willing to spend money to ensure that all the

members of a group receive an equal payout [197].

If we accept that group dynamics might affect the behaviour of users in a group, such

that they behave differently to a set of independent users, then the existence of interdependent

preferences means that group applications have an additional QoS parameter to consider — the

variation in a QoS parameter between the members of a group. For example, if one user in

a group is receiving 90% packet loss, this can affect both the afflicted user and the rest of the

group, since neither can communicate with the other.

2.3 Networking techniques

We have discussed the importance of delay in multimedia applications such as games. In order

to understand how networked delay might affect a game player’s experience, it is useful to

understand the causes of delay, and how games attempt to deal with the existence of this delay.

The causes of delay in CSCW applications are examined by Ingvaldsen et al. [91]. These

can be divided into end-system factors, such as video compression and decompression, and

packetisation of data, and network factors, such as the actual propagation of data packets

through the network. The network is found to be the primary cause of delay.

2.3.1 Network architecture

Many of the networking techniques utilised in games are originally derived from the DIS stan-

dards for military simulations [92]. In a military scenario, all the clients are trusted, and so

they can report their position and movements to all the other clients in the simulation. Thus,

fully distributed peer-to-peer architectures are feasible and are commonly-used. In most games,

however, clients are not trustworthy, and the incidence of cheating in networked games is very

high. If a client were solely responsible for reporting its location, it would be easy to manipulate

2.3. Networking techniques 35

the client in order to fake this information. Most games, then, have chosen to use a client-server

architecture2 , and the server acts as an authoritative source of information and maintains a con-

sistent state for the players. The clients are trusted with as little information as possible, and in

some games, are “nothing more than a way for the user input to be sampled and forwarded to

the server for execution” [23].

As well as reducing cheating, the other benefits of a client-server architecture are outlined

by Funkhouser [70]. The message distribution function is moved out of the clients and into

the server, which means less load on the client machines. The application is able to scale

better, since processing, storage and bandwidth requirements scale with the density of entities,

rather than the total number of entities as in a peer-to-peer environment. The main drawback

of a client-server topology, however, is that there is increased latency. Blow [28] outlines the

additional delay created by a client-server game. Delay at the client comprises observation lag

(the rendering of the world and its comprehension by the player), and influence lag (the player’s

input and responses). A server has to receive messages, process them, and then retransmit back

to all of the players. This is potentially true even for updating the player’s own moves, since

only the server has the authoritative copy of the world’s database, and so a player may need to

wait for an updated copy of this database before they can be sure of their own whereabouts.

2.3.2 Synchronisation delay

In the game MiMaze [120], a synchronisation delay mechanism is used to compensate for

the differing delays experienced by different players. A global clock for all the players is

provided using NTP (Network Time Protocol). Time is divided into sampling periods, and state

update packets are timestamped and placed in buckets, associated with each sampling period.

Each client only considers packets which are in the “current” bucket. All the clients therefore

synchronise to a common clock, irrespective of what their actual network latencies might be. In

MiMaze the synchronisation delay is set to 150ms, such that a packet issued at time t is actually

processed by the client in the bucket containing t+ 150ms. If, however, the network delay is in

excess of 150ms, the update packets would be discarded.

2.3.3 Dead reckoning

Players in a client-server game are dependent on receiving state updates from the server in order

to know what is happening in the shared virtual world. It would be extremely expensive, both

in network and computational resources, to send updates on a continuous basis, and so state

updates are sent at time intervals. The clients therefore need a method of approximating the

2Confusingly, some games, e.g. Age of Empires [185], describe themselves as being peer-to-peer, when in fact

they are client-server, with one client acting as a non-dedicated server.

2.3. Networking techniques 36

state of the world in between receiving these updates, or in the event of packet loss. One of the

most commonly used methods is dead reckoning [74, 11]. Using the previously-established

location information for an object, the movement of the object can be predicted.

Several methods for prediction are outlined in [151], such as predicting by assuming con-

stant velocity or acceleration, predicting the position of an object, or predicting the input of a

player. The optimal prediction method can depend on the type of game, and the type of input

device that is likely to be used — for instance, a driving game might require an input device

with different characteristics to the input device for a shooting game, and a games designer

could optimise the prediction scheme accordingly.

As with the choice of network architecture, cheating is a concern for a dead reckoning

implementation. Baughman and Levine [20] describe a possible method for cheating under

dead reckoning by deliberately dropping state updates. If a dead reckoning policy allows n state

updates to be approximated before the player is assumed to have disconnected, then a player

could deliberately drop n−1 updates without being detected, as long as the nth update is sent.

The other players will then be forced to approximate the player’s position, but will only be

able to confirm the position every n updates. Depending on the value of n, and the accuracy of

the prediction algorithm, this might make it possible to cheat. Baughman and Levine propose a

lockstep protocol, whereby all the players’ clocks advance synchronously. Lockstep can prevent

cheating, but at the expense of having to disable dead reckoning. An anti-cheating mechanism

that can operate under dead reckoning is proposed by Cronin et al. [48]. Rather than wait

for each player to send the details of their move to each of the other players before the game

clock is advanced, each player can send a number of moves at once in a pipeline. Using a

pipeline, however, means that a player could wait for another player to send a set of pipelined

moves before responding, and thus potentially benefit by knowing all the other player’s moves.

To prevent this “late-commit” cheat, an adaptive pipeline can be used, where all the players

measure their delay to the other players, and adjust their pipeline sizes accordingly. While the

pipeline size is being adjusted, moves are placed into a secure buffer, to prevent exploits.

2.3.4 Consistency

Dead reckoning can help to minimise the effects of latency, but it can also introduce problems

of its own. Consider player A attempting to shoot player B in an FPS game (Figure 2.5(a)).

Player A fires their gun, and dead reckoning shows A that B is now dead (Figure 2.5(b)). There

is 200ms latency, however, between A and B, and before B receives the indication that they

have been shot by A, B shoots C (Figure 2.5(e)). Should C be dead (Figure 2.5(f)), since they

2.4. Discussion 37

Time t t +1 t +2

A’s view

A B

(a) time t: A shoots B

A

B

(b) time t + 1: A thinks B is

dead

A

B

(c) time t+2: A still thinks B is

dead

B’s view

B C

(d) time t: B sees C

B C

(e) time t +1: B shoots C

C

B

(f) time t + 2: B thinks B is

alive and C is dead

Figure 2.5: Inconsistency in gameplay caused by network delay

were shot by B, who was already dead (Figure 2.5(c))? Network delay can therefore lead to

inconsistencies between each user’s state.

One method for resolving these inconsistencies is a timewarp algorithm [130]. The ap-

plication periodically makes snapshots of all the user’s state. Whenever an inconsistency is

detected, a “timewarp” is performed, reverting the state to the last recorded snapshot. Time-

warping has been implemented in the game Half-Life, where it is named “lag compensa-

tion” [23]. Keeping snapshots can be memory and computationally expensive, however, and

some researchers have proposed using multiple servers instead [49].

Although rolling state back to a previous snapshot can reduce inconsistency, it also makes

for a disjointed experience for the user. To return to the previous example, player C would now

die, and then be brought back to life after the timewarp occurs.

2.4 Discussion

Networked games are becoming an increasingly popular application on the Internet. Although

in some respects, games are not particularly interesting from a research point of view, as they are

simply commercial implementations of applications developed in the research community, such

as NVEs and DIS, we believe that their sheer popularity merits closer examination. A research

NVE will never have as many users as a game, since only a small proportion of computer

users have access to research and academic networks. Therefore, we claim that the study of

networked games will be useful to further research in NVEs, since they provide a guide to how

users will behave in large-scale NVEs.

2.5. Summary 38

There are also important differences between games and research applications. Military

simulations such as DIS are generally designed for purpose-built networks, or at least networks

which can provide a guaranteed level of QoS. Reliability is a primary concern, and the DIS

standard stipulates that 98% of PDUs be delivered. This is a result of the nature of the task —

in a military situation, it is vitally important to know exactly the location of all your vehicles,

and which of your targets have been destroyed. Reliability is emphasised over other attributes

of the simulation, such as the realism of the graphical representation. It could be argued that

in a game, the graphics are more important than reliability. The packaging and advertising for

any commercially-available game will undoubtedly advertise the realism of the graphics, the

advanced 3-D features, and so on, rather than the reliability of the network protocols. This may

also be due to the nature of the task — the consequences of an error in a game are unlikely to

be as serious as those of a miscalculated miltary manouever. This is the fundamental difference

between a game and a simulation — “A simulation is a serious attempt to accurately repre-

sent a real phenomenon in another, more malleable form. A game is an artistically simplified

representation of a phenomenon” [46]. On the other hand, the relationship between military ap-

plications and games is an important one, and Lenoir argues that in the future it may be difficult

to distinguish between the two [119].

Network latency appears to be the primary concern of most users of networked games, and

has also been highlighted by the research community as a particular problem. In addition to

latency, we must consider the interaction between the members of a group application, and how

this might affect preferences for QoS.

We have discussed how latency in a game can lead to several effects which are observable

by the end users. Consistency, the possibility of cheating, jerkiness and disjointed state updates

are just a few of these. Game developers have designed methods such as dead reckoning to

cope with the effects of network latency, but these are not perfect, and can create additional

problems. Whilst this thesis will not concentrate on these latency-compensating techniques, we

can determine from our discussion that we would expect a player to desire a minimal amount

of network latency between themselves and the game server and other players, and to be able

to notice the effects of latency.

2.5 Summary

In this chapter we have discussed how networked games have evolved from the relatively sim-

plistic Tennis for Two in the 1950s to the popular FPS, RTS and MMORPGs of today. We have

noted the following points:

2.5. Summary 39

• Games are closely related to NVEs, DIS and CSCW applications

• Games may be more impressive graphically, but less reliable than military simulations

• Bandwidth is not a large problem for current games

• Latency is the most important QoS parameter

• Games use a variety of techniques to deal with latency, e.g., dead reckoning or synchro-

nisation delay

• Multiuser applications may exhibit network externalities or interdependent preferences

In the next chapter, we will discuss some of the work which is currently being carried out

to address these problems. We will then outline the area which this dissertation will examine.

Chapter 3

Group preferences and Quality of Service for

games

In Chapter 2 we looked at the evolution of networked games, and we have seen that multiplayer

games are becoming a popular networked application. We have claimed that due to the popular-

ity of these games, they are an important application to study, so as to aid understanding about

research into networked applications and NVEs, and that it is also worthwhile to study games in

their own right. Network delay was noted to be a particular problem, and one that users tend to

consider when playing networked games. We have also discussed how the interaction between

users in a group might affect behaviour and user preferences for QoS, and suggested that this

needs to be examined in more detail.

In this chapter we survey some of the work that is most closely related to this area. We

then explain the focus of this dissertation, the game that we have chosen to examine, and the

reasoning behind this choice.

3.1 Related work

3.1.1 Network analysis

Several researchers have conducted network-level analyses of games. Borella [30] analyses the

FPS game Quake. Packet-level network traces are taken on a local area network and analysed.

The game server is found to send packets in bursts, and each burst consists of packets being sent

on a nearly continuous basis, with very small interarrival times. The interarrival time between

the bursts can be modelled by a split extreme distribution — the lower 50% is deterministic,

whilst the upper 50% is exponentially distributed. In addition, the interarrival distribution is

very heavy-tailed, and exhibits a high level of autocorrelation. Different clients receive different

amounts of data; this is to be expected since different players will be in different parts of the

virtual world and thus require different update information. Färber [63] compares Borella’s

3.1. Related work 41

results with those for the game Half-Life. As explained in Chapter 2, Half-Life is based on

Quake, and so it is perhaps unsurprising that the results are similar.

Bangun et al. [17] look at both Quake and the peer-to-peer game Starcraft. Starcraft differs

from Quake in that packet interarrival times decrease as the number of players increase — this

is probably due to its peer-to-peer architecture. In [16] Bangun et al. also look at the client-side

packet size distribution of Tribes players. Tribes is a team-based FPS game which also uses a

client-server architecture with UDP network messages. The packet size distribution is found to

be heavy-tailed, with 90% of the packets smaller than 60 bytes.

Joyce [106] also looks at FPS games, taking measurements of the games Quake and Un-

real, but rather than examining a local area network, analyses games on a WAN by looking at

the traffic traversing a large ISP peering point. Packets sent by the clients are generally small

(50-70 bytes), whilst the server sends packets in the 50-150 byte range. Both games, despite

being designed by different companies, are found to have very similar networking characteris-

tics.

These studies only look at activity at the network level. To understand why an application

is creating particular patterns in network traffic, it can be useful to examine activity at the

application, or session, level. Greenhalgh et al. look at network and session-level behaviour in

an interactive television program [77]. They find that the application is characterised by bursts

of coordinated activity, and there is little sense of “turn-taking”. Almeroth and Ammar [6] look

at session-level behaviour in multicast single-source video sessions, and find that users’ session

duration is exponentially-distributed. Both of these findings could make provisioning for group

applications more difficult, since the bursts may occur when the application is more interesting

for the users, and so network congestion or loss at these points would be most disruptive.

3.1.2 Network performance, congestion control and QoS

Fischer et al. [66] note that it may be optimal from a network point of view if members in

a group application do coordinate their preferences. If there are three receivers {r1,r2,r3}

of a multimedia stream downstream of a bottleneck, and {r1,r2} are receiving high-quality

video, whilst r3 is receiving low-quality, then in the absence of a layered encoding scheme, it

would make sense for r3 to receive the high-quality stream as well, or for {r1,r2} to change

to the lower-quality stream. A system of agents is proposed, which interact with each other,

negotiating and renegotiating QoS requirements between multiple applications and users, in

such a manner that the overall QoS and utility of all the users may be maximised. Kouvelas

et al. [110] present a scheme whereby receivers can self-organise into groups to maximise the

quality of their received streams.

3.1. Related work 42

QoS for delay-sensitive applications is a topic that has been addressed by many re-

searchers. Both the IETF IntServ and DiffServ standards deal with delay-sensitive applications:

RFC1633 [32] states that the “core service model is concerned almost exclusively with the

time-of-delivery of packets”, whilst the DiffServ standards include an Expedited Forwarding

Per-Hop Forwarding Behaviour (PHB) for delay-sensitive applications [103]. Key et al. [109]

present a set of packet-marking schemes for delay-sensitive applications, and propose that these

schemes may be useful, depending on users’ sensitivity to delay.

Probabilistic Congestion Control (PCC) [192] is a congestion control scheme designed

specifically for games and similar applications. Games may have a strict lower bound on the

amount of traffic that is required for gameplay to make sense — if a player is only receiving a

state update once a minute because of a bottleneck link, their game is likely to be impaired to

the extent of being unplayable. Rather than implementing congestion control on each individual

flow, PCC proposes that all of the players in a game should be jointly considered. Thus, in the

event of congestion, rather than reducing the traffic sent to and from individual player, which

might make the game unplayable for everyone, one or more flows could be terminated, i.e., one

or more players could be dropped from the game. If the players of a game share a common

bottleneck, it is possible to use PCC to keep the sum of the flows generated by all the game

players TCP-friendly, and yet allow the other players to carry on playing unimpeded, which

might be preferred by game players.

One research area that has considered the preferences of a group in a group application,

rather than the preferences of the individual members of the group, is multicast congestion

control. Proportional fairness has become a popular metric for allocating bandwidth between

flows on a congested link [108]. This relies on the assumption of individual users having loga-

rithmic utility functions. It is unclear, however, whether this same logarithmic utility function

should be assumed for a multicast or multipoint transmission. Should a multicast flow, which

may represent the usage of several users, receive a larger bandwidth share than a unicast flow?

To limit a multicast flow means that a larger number of users will be penalised. On the other

hand, by using multicast, those group members may be receiving better network performance

than if they had all chosen to conduct simultaneous unicast communications. Chiu [42] shows

that proportional fairness may produce an “unfair” outcome in the multicast case, and suggests a

weighted proportionally fair solution, where multicast flows receive a bandwidth share weighted

according to the aggregate utility of the downstream receivers. Legout et al. [116] suggest three

possible strategies for allocating the bandwidth amongst the downstream receivers. A Receiver

Independent strategy is where bandwidth is allocated equally amongst the downstream multi-

3.1. Related work 43

cast and unicast users, so that multicast users are treated the same as unicast users. The Linear

Receiver Dependent (LinRD) stategy determines the bandwidth share of a multicast stream ac-

cording to a linear relationship with the number of downstream receivers, i.e., the multicast

stream receives the aggregate bandwidth that the receivers would have gained if they had each

used unicast. Finally, a Logarithmic Receiver Dependent (LogRD) strategy attempts to reward

users for choosing multicast, by increasing the bandwidth share to a multicast stream logarith-

mically as new receivers join. Whilst these strategies are designed for multicast applications,

they might also apply to multiuser applications such as games.

The commonly-used client-server network architecture has several drawbacks from a net-

working perspective. A bottleneck that is near a central server will impair performance for all

of the players. Several researchers have recently proposed proxy mechanisms, whereby a set of

servers can be distributed to various hosts [43, 131, 19, 79]. A proxy system can aid robustness

by providing alternative routes and servers, aid congestion control, and help to prevent cheating

by timestamping actions and limiting the amount of information available to clients. Min et

al. use knowledge about the players’ respective locations within the game to carry out load-

balancing across a group of servers [141]. Tran et al. use a Java-based middleware approach

to achieve a similar goal [186] — the virtual world simulation is replicated across a number of

simulations, each of which has a “master” replica, and a number of “slave” simulations, which

can be viewed as proxies.

3.1.3 Delay requirements

The delay bound for real-time multimedia applications, that is, the level of delay above which

performance becomes impaired, has been studied by researchers in a variety of fields. Human

factors research indicates that a round-trip time of 200ms might be an appropriate limit for real-

time interaction [15]. The IEEE DIS standard stipulates a latency bound of between 100ms and

300ms for military simulations [92]. MacKenzie and Ware find that in a VR (Virtual Reality)

environment, interaction becomes very difficult above a delay of 225ms [125]. The ITU G.114

standard recommends between 0 and 150ms for a one-way transmission time for voice commu-

nications, although up to 400ms is considered acceptable [98]. Park and Kenyon [152] examine

a two-user cooperative task in an NVE. Performance with 200ms latency is significantly worse

than 10ms, and jitter is also found to have a significant effect.

There have been few studies of commercially-available networked games in particular.

Pantel and Wolf [150] examine two car-racing games, and find that “a delay of more than 100ms

should be avoided”, although they do note that different types of games might have differing

requirements. For instance, Schaefer et al. [170] examine players of another type of game,

3.1. Related work 44

the shooting game XBlast, using a Mean Opinion Score (MOS) methodology, and find that a

delay of 139ms is acceptable. Vaghi et al. [189] analyse the effects of delay in a simple ball

game implemented on the MASSIVE NVE. They find that delay becomes perceptible through

discontinuities and visual anomalies in the game. Apart from these studies, many of the delay

requirements for games have been extrapolated from those for other real-time applications.

Cheshire [41] proposes a latency bound of 100ms for networked games, although no empirical

basis is given for this.

Common to all these studies is that typically very small groups or single-user tasks are

studied, and all users are assumed to share similar network characteristics.

3.1.4 Behaviour of game players

To observe and understand user behaviour in networked games requires some sociological anal-

ysis of the players and the games themselves. Sociologists have been studying the effects of

games since at least the early 1980s [157]. This research tends to concentrate on the content

of games, such as violence or narrative in video games, which is perhaps not very interesting

from a networking perspective. For instance, several researchers look at aggressive behaviour

by players of computer games [57].

User behaviour in games may differ from that in other multimedia applications due to the

nature of the application. Game players can exhibit symptoms of addiction [33, 78], and online

gaming is considered by some researchers as an example of pathological Internet use [143]. It

has also been shown that users react differently when playing against other people as opposed

to computer-generated opponents [194].

Manninen [127] looks at the interaction between users in games, in particular Counter-

Strike, which is a variant of Half-Life. Several methods of interaction are found to be present,

such as the appearance of a player’s avatar, gestures, physical contact (within the context of

the gaming world) pre-programmed moves, and modifying the virtual world. This study takes

place on a LAN, and we might expect results to differ from actions on the public Internet: “the

LAN gaming sessions indicate the need for strong social togetherness, and thus, are often the

venues for the strongest experiences” [128]. Players have to make a special effort to attend such

“LAN parties”, often bringing their own equipment with them, and thus their tolerances might

differ from a spontaneous Internet gaming session. Another behavioural analysis of a computer

game can be found in [105], but again this is in a non-networked environment.

3.2. Approach of this dissertation 45

3.1.5 Other games research

We have discussed how games are worthy of research by virtue of their popularity. Since such

games are popular, it makes sense to use them for understanding user behaviour, rather than

writing a custom application for research purposes. This aspect of games has been noted by

many other researchers, who have also chosen to leverage existing games [122]. For instance,

FPS games have been used to study “e-learning” and the visualisation of knowledge spaces [69,

101], context-aware services [35] and Artificial Intelligence (AI) [2, 112].

3.1.6 Discussion

Games are becoming an increasingly popular area of research, and we have outlined some of

the related work. There have been several network-level analyses of games, but little corre-

sponding analysis at the session level. Resource management schemes for networked games

and multiuser applications have been proposed, but these have not been examined with user

behaviour to see if they would be acceptable to game players. The delay requirements for

multimedia applications are well-known, but there has been little work examining multiplayer

games in detail. Sociological studies of games have concentrated on aspects which are not spe-

cific to the networked game, such as the narrative, although the interaction between players in

games indicates that the social and group effects discussed in the previous chapter might be

present.

We thus note several areas which need to be examined:

• Session-level user behaviour of networked multiplayer game players

• Delay requirements for multiplayer real-time networked games

• QoS preferences for groups of users in multiplayer games

3.2 Approach of this dissertation

As games are one of the most popular NVEs, and are played by millions of users across the

Internet every day, a potentially useful method of learning about user behaviour in games is to

examine the actions of these current game players.

We have chosen to concentrate on the FPS game. The most popular MMORPGs generally

operate a small number of servers, and monitoring user behaviour would require access to

these servers. Gaining such access is difficult, because many of the companies that run such

servers do so on a commercial basis and are reluctant to divulge usage data or allow third-party

monitoring. The server program for these commercial MMORPGs is not made available, and

so it is not possible to run an alternative server. A few open source RTS games and MMORPGs

3.2. Approach of this dissertation 46

Average number

of servers

Average number

of players per

server

Maximum number of

players on a server

25.50 0.563 30

Table 3.1: Average number of FreeCiv players

exist, such as FreeCiv [68], but the number of players that play these opensource games is too

low to make any monitoring worthwhile. We polled the FreeCiv “metaserver” (which provides a

list of all the currently-available FreeCiv servers) every six hours for four months, the results of

which are shown in Table 3.1. The maximum number of players observed on a single server was

30, and servers were usually empty. This is far lower than the hundreds of thousands of players

who regularly play commercial MMORPGs like Everquest and Diablo. It is unlikely that the

interactions between such a small number of users on a FreeCiv server would be representative

of the interactions on their commercial counterparts.

In comparison, FPS games comprise thousands of servers, each of which services a small

number of players. Anyone can run one of these servers, as the server daemon program is

typically provided with the client software. Running a server negates the need to rely on other

server operators, since usage data on the players can be gathered locally.

Another reason to choose the FPS game over the RTS game or MMORPG is that FPS

games are generally thought to be more delay-sensitive than RTS games or MMORPGs. Ter-

rano and Bettner describe testing carried out during the development of the RTS game Age of

Empires: “250 milliseconds of command latency was not even noticed - between 250 and 500

msec was very playable, and beyond 500 it started to be noticeable” [185].

Of the FPS games, we have chosen to study the game Half-Life, a game released by Valve

Software in 1998. Valve licensed the Quake/Quake II graphics engine and networking code

from id Software, and so from a networking perspective, Half-Life is very similar to the Quake

family of FPS games, as well as the newest generation of id Software FPS games such as Return

to Castle Wolfenstein. These games represent the majority of FPS games currently played on

the Internet, and in any case it has been shown that FPS games not based on this code also

exhibit similar networking characteristics [106].

At the time that our studies were carried out, Half-Life was by far the most popular FPS

game. Figure 3.1 shows the average number of servers available on the Internet for the most

popular FPS games. These figures were obtained by polling the master servers for each of the

3.2. Approach of this dissertation 47

Heretic II

Soldier of Fortune

Tribes

Kingpin

Sin

Descent 3

Quake

QuakeWorld

Tribes 2

Quake II

Quake III Arena

Unreal Tournament

Half−Life

Average number of FPS game servers

Number of servers

0 5000 10000 15000 20000

Figure 3.1: Average number of servers for different FPS games

games twice a day over the course of a year. As there can be thousands of servers available to a

player at any given time, the master servers provide a mechanism for discovering these servers.

A game server registers with the master server on startup, and the master server responds to

queries from players by providing a list of active servers (more details about the master server

mechanisms can be found in Appendix B). The number of servers provides an indication of the

popularity of a game, and the number of Half-Life servers exceeds the total number of servers

for all the other FPS games.

As new games are introduced, old games will wane in popularity. This is verified by Mc-

Creary and Claffy’s study [134], which shows that over time, older games such as the original

Quake generated less traffic than newer games such as one of its more recent successors, Quake

III. Figure 3.2 plots the weekly average number of servers for each FPS game from the queries

in Figure 3.1, over time. It can be seen that Half-Life was increasing in popularity over this time

period, with approximately 15,000 servers in June 2001, rising to approximately 28,000 servers

by September 2002 (the occasional drops in the number of servers are probably due to connec-

tivity problems affecting the centralised master servers). In comparison, the number of servers

3.3. Summary 48

for the other FPS games have relatively static growth rates. Half-Life is thus an appropriate

game to study, since it is both popular, and representative of most FPS games.

0

5000

10000

15000

20000

25000

30000

01/07/01 01/10/01 01/01/02 01/04/02 30/06/02 01/10/02

S
e

rv
e

rs

Time

Number of game servers

Half-Life
Unreal

Quake III
Quake II

Quake
QuakeWorld

Tribe 2
Descent

Sin
Kingpin

Tribes
Soldier of Fortune

Hexen II
HexenWorld

Heretic II
Shogo

Figure 3.2: Number of game servers over time

3.3 Summary

In this chapter, we have outlined some of the current research that is taking place in the area of

networked games, and have described the problem and area that this thesis will examine. We

have noted the following points:

• Research has examined network-level statistics, congestion control and delay require-

ments for generic NVEs

• Areas that still need to be examined include examine session-level behaviour, delay re-

quirements for games, and QoS preferences in group situations

• FPS games are easier to study than RTS games or MMORPGs due to server size and

commercial considerations

• Half-Life is the most popular FPS game, and one that is representative of the genre

Chapter 4

Session-level join-leave behaviour in FPS

games

4.1 Introduction

In the previous two chapters, we have discussed the nature of FPS games, and how playing

such a game is a group activity. In a group activity, it is important to have a number of players

in a game in order to create a worthwhile playing experience for the users. We have therefore

speculated that playing an FPS game might exhibit network externalities, whereby the utility

that a player receives from a game is related to the number of players in the game. In this

chapter we attempt to demonstrate the presence of these network externality effects — that the

existence of other players in a game affects a user’s decision to join or leave a game. In order

to show this, we directly observe game players who connect to publicly-available FPS game

servers.

As we have already described, FPS game servers tend to run games for an indefinite period

of time, and users are free to join and leave at any time. There are several thousand servers

running on the Internet at any given time (see Figure 3.1). These servers are publicly accessible

by anyone who is connected to the Internet. Through the game-specific query mechanism, it is

possible to monitor these servers, and thus to gain an understanding of user behaviour in these

FPS games.

4.2 Methodology

Almeroth and Ammar [6] monitor a number of IP multicast sessions by joining a session and

then watching the other session members join and leave. This is impractical for networked

games, however, since to join a game implies participation. Passive users are generally dis-

connected from the game if there is no activity for a certain period of time. Game servers also

tend to have a fixed maximum number of players which can connect to the server — to take

4.2. Methodology 50

up one of these slots with a monitoring program would probably incur the wrath of the players

and server operator, and lead to the monitoring host in question being disconnected and banned.

This means that a monitor would have to be a physical player. As most people are only capable

of playing one game at a time, and only for a certain number of hours a day, this limits the scope

of any data collection. Although it is possible to simulate a user through a script or program,

such “bots” are also frowned upon by many game server operators and the gaming community,

and the use of these scripts could lead to the user in question being barred from that server.

Moreover, joining a server as an additional player might create problems, in that the hypothesis

we are testing is that user behaviour depends on the number of players in a game. To test this

by joining a server, thus altering the number of players, would affect the results. A passive

monitoring system was required, such that the behaviour of players could be monitored without

participating or interfering in the application.

Many game servers offer a query mechanism, whereby specific variables about game status

can be retrieved. Since joining and continuously monitoring games seemed impractical, polling

and querying game servers at regular intervals was determined to be the next best option. By

polling servers and determining the number of players at each poll, an approximation of user

behaviour can be obtained. Many networked games also allow the querying of such variables

as players’ nicknames and the amount of time that they have been playing, and so the duration

of each users’ session can also be estimated. The accuracy of this method depends on the

frequency of polls. If the polls are spaced too far apart in time, then any users who join and

leave between polls will be missed. If the polls are too frequent, the amount of network traffic

might have an effect on the servers and perhaps affect user behaviour.

Data were collected using the QStat tool [159], which is a program designed to query and

display the status of game servers. QStat supports a large number of online multiplayer games.

We have already mentioned that Half-Life is one of the most popular FPS games. Half-Life was

also one of the games which supports the reporting of a player’s connection time, and this was

another good reason for using Half-Life for our study.

A list of 2193 IP address/port pairs1 of hosts running the Half-Life server daemon was

obtained from a “master server” at half-life.west.won.net. The master server’s list is

composed from submissions by server administrators and/or automatic registration by servers

(depending on the game). This list may also be queried by users through the application itself, or

through the use of some of the aforementioned programs for determining the closest or quickest-

1It is not uncommon for a single machine to run several servers on different ports; of our list of 2193 servers,

there were 1725 unique IP addresses.

4.2. Methodology 51

responding game server. This list should therefore be a representative set of publicly-available

game servers.

The servers were polled at regular intervals, as depicted in Figure 4.1. A single machine

at University College London (UCL) was used to sequentially poll each of the servers in the

list. At each poll, the number of players, their chosen nicknames and the number of seconds

that each player had been connected were retrieved (some example output from the query tool

is shown in Figure 4.2). Servers might occasionally fail to respond to a poll. This might be

due to transient congestion, since all the queries use UDP and thus do not take advantage of the

retransmission features of TCP, or because the host was overloaded. If this was the case, we did

not retransmit, since we have noticed that in certain cases this can exacerbate the effects which

led to the original timeout [83]. Instead, we assumed group membership to be the same as at

the previous successful poll, if the next poll was successful. We assume that two consecutive

unsuccessful polls indicates that the server has indeed terminated, and group membership is

zero.

There are several limits to this methodology. Since polling took place at the application

level, we could not detect such events as unsuccessful join attempts, as these do not register

in the game. We were also limited in that polling takes place from a central machine at UCL,

and so any network failures that existed solely between UCL and the game servers (but not

between the game server and the players) would affect our results. The findings in this chapter

are reported in [84].

Servers Game Frequency Duration

O-I 2193 Half-Life 30min 1 week

O-II 35 Half-Life 5min 3 days

O-III 22 Quake 5min 1 week

O-IV 3 Half-Life 5min 2 months

O-V 3 Quake III Arena 5min 2 months

Table 4.1: Observations taken of game servers

Several sets of observations were taken; the differences between these, and the labels that

are used in this chapter to refer to them, are shown in Table 4.1. The first set O-I used the

aforementioned master list of Half-Life servers. From this, the 35 most popular servers were

selected for more detailed observation over one weekend in O-II.

4.2. Methodology 52

SERVER
GAMEPOLLING

USER USER

USERUSER

REPLY (2 UDP pkts) <−

QUERY (2 UDP pkts) −>

(PlayerName, ConnectTime)

MACHINE

Figure 4.1: Data gathering setup

NAME: Merlin TIME: 5710

NAME: [F.u.T]The_LAW TIME: 5728

NAME: MagNETo [FH] TIME: 2176

NAME: TomiN TIME: 2409

NAME: [DEM] Guybrush T. TIME: 8575

NAME: [.HoF.]Ben Kenobi TIME: 1177

NAME: [Thug]Tosh TIME: 142

NAME: TDMT_Silvan TIME: 1540

NAME: Gulzak TIME: 874

NAME: [DBK]HannibalTC TIME: 954

NAME: [STANDARD] Kill Demon TIME: 1085

NAME: -=Phoenix=- TIME: 5593

Figure 4.2: Example QStat output

Set O-III used 22 Quake servers, the addresses of which were also obtained by querying a

master server. Quake is an older game, introduced in 1996, which is why the number of servers

is so much lower than Half-Life, which first went on sale in 1998. We chose to analyse Quake,

however, because it is one of the few games to allow the querying of players’ IP addresses, and

that the sourcecode for Quake is freely available, and at the time we believed these aspects may

have been useful for determining the network topologies and spatial analysis of games.

The last pair of observations, O-IV and O-V, come from two sets of servers which Mi-

crosoft Research have been running at their site in Cambridge, UK. Using a public list of servers

4.3. Session membership 53

proved to have many difficulties. Some of the IP addresses which appear on the list of servers

were dynamically allocated addresses (caused, for instance, by users running game servers via

dial-up ISP accounts or other machines with intermittent connectivity). It would appear that

the master server does not update its list frequently enough to eliminate these, and so many

polls would end up targeting machines which were no longer running the game server. Of the

original list of 2193 addresses, we found that 265 of these were never running the server during

the course of our polls. The servers run by Microsoft Research had static IP addresses and

thus we could be confident that they would be contactable for the duration of our polls. These

servers consisted of two games, Half-Life and Quake III Arena. The game used in O-V, Quake

III Arena, does not allow the querying of player duration. For this set of data we assume that

each player joined at the time of the poll at which they are first noticed; this figure thus has a

potential inaccuracy of up to two poll periods, that is, 10 minutes.

4.2.1 Summary of observations

We observed a total of 1,757,539 individual sessions (i.e., individual users joining and then

leaving a game server). Table 4.2 shows some of the overall aspects of the data. We were inter-

ested in examining three specific features: the number of participants in a game, the interarrival

time between participants, and how long a player remained in a game.

Total joins Average joins/server/hr Median interarrival (sec)

O-I 1510445 4.65 225

O-II 69961 27.76 70

O-III 37037 10.01 118

O-IV 23559 4.19 115

O-V 5872 1.04 300

Max interarrival (sec) Median duration (sec) Max duration (sec)

O-I 246171 1576 3165999

O-II 17309 1098 66738

O-III 51706 618 410699

O-IV 77843 612 2614737

O-V 76800 901 403201

Table 4.2: Summary of session-level analysis

4.3. Session membership 54

0

10

20

30

40

50

60

70

80

Sun Mon Tue Wed Thu Fri Sat

M
em

be
rs

Total membership

(a) single server from O-IV

0

10

20

30

40

50

60

70

80

90

100

Sun Mon Tue Wed Thu Fri Sat

M
em

be
rs

Total membership

(b) single server from O-IV

0 1 2 3 4 5 6 7

−
0
.5

0
.0

0
.5

1
.0

Lag (Time)

A
C

F

(c) Autocorrelation function of Figure 4.3(a)

0 1 2 3 4 5 6 7

−
0

.5
0

.0
0

.5
1

.0

Lag (Time)

A
C

F

(d) Autocorrelation function of Figure 4.3(a)

Figure 4.3: Number of users

4.3 Session membership

Figures 4.3(a) and 4.3(b) show the total number of players for two game servers, scaled to a

one week period. The time axis in Figures 4.3(a) and 4.3(b) is set to what we believe to be

the server’s local timezone, having approximated the server’s location by performing a whois

on the server’s IP address. It can be seen that the number of participants in a game exhibits

strong time-of-day effects, peaking in the middle of the day. The strong sinusoidal pattern in

the correlograms in Figures 4.3(c) and 4.3(d) also indicates seasonal variation.

Since the time-of-day effect is so clearly evident, it is possible to do a simple seasonal

decomposition by subtracting each observation from the mean value for all the observations

taken at that time of day [39]. The results of this are shown in Figure 4.4, where the higher

solid line represents the time-of-day effect, the lower solid line the remainder, and the dashed

4.3. Session membership 55

line the observed data. Three days are higher than the others; these, as one might expect, are

Friday to Sunday. Game players evidently consider games a recreation, and as such spend their

weekends participating in networked games.

Seasonal decomposition of members

Time (days)

M
em

be
rs

1 2 3 4 5 6 7 8

−
2

0
0

0
0

2
0

0
0

4
0

0
0

6
0

0
0

8
0

0
0

1
0

0
0

0
1

2
0

0
0

Figure 4.4: Seasonal decomposition of smoothed membership data

4.3.1 Network externalities

Figure 4.5 shows the temporal autocorrelation function (ACF) of the corrected data from Fig-

ure 4.4, after removing the time-of-day effect; this shows the degree to which the number of

players in a subsequent time period depends on the session membership in the previous period.

It can be seen that the level of autocorrelation is high, even for a large number of time periods.

Thus, as expected, there appear to be some network externality effects.

Having observed the time-of-day and network externality effects, we analysed the session

membership data using time-series analysis. We applied several ARIMA (Autoregressive In-

tegrated Moving Average) models to the data (see Appendix A for a description of ARIMA

modelling).

Figures 4.6 and 4.8 show the diagnostics for a (1,1,1)×(0,1,1)48 ARIMA model. In each

figure, the top left chart indicates the residuals from the model, the middle left chart is the ACF

of the residuals, and the bottom left chart shows the Ljung-Box statistic (see Appendix A.1).

The right side of the figure shows a cumulative periodogram for the model, and is used to

indicate sinusoids (periodicity) in the model. Figures 4.7 and 4.9 show the diagnostics for a

4.4. User duration 56

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag (Time)

A
C

F

Figure 4.5: Temporal autocorrelation in number of players

(2,1,1)× (0,1,1)48 model for the same pair of servers. The Ljung-Box statistic in Figures 4.7

and 4.9 indicate a higher goodness of fit.

A (2,1,1)×(0,1,1)48 model incorporates both network externalities, since the autoregres-

sive component means that the number of players up to an hour prior to a player joining has

an effect on a player’s decision to join, and also includes the time-of-day effect through the

seasonal (0,1,1)48 component.

4.4 User duration

Game servers tend to run continuously, with users joining and leaving as they wish. As such it

is not meaningful to discuss the overall session duration for the server, i.e., a whole game, since

this can be construed as being the length of time that the server is running. Instead we examine

the duration of each individual session, i.e., a user’s game. We define a session as being the

time between a player connecting to the server, and disconnecting from the server. A player

being killed in the game and “respawning” (coming back to life) elsewhere in the virtual world

does not constitute a new session. Figure 4.10 shows the duration of users’ individual sessions

from O-II: it can be seen that these durations vary quite widely, and that many game durations

are lower than our polling period of five minutes. This might be due to dropped connections,

or users browsing games by starting a session to see what is going on and deciding that a

particular game is not to their liking. At the other end of the spectrum, there are several long

4.4. User duration 57

Standardized Residuals

Time
2 3 4 5 6 7 8

−
4

0
2

4

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.4

0
.8

Lag

A
C

F

2 4 6 8 10

0
.0

0
.4

0
.8

p values for Ljung−Box statistic

lag

p
 v

a
lu

e

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

residuals from (1,1,1)x(0,1,1) process

Figure 4.6: ARIMA diagnostics and cumulative periodogram for (1,1,1)×(0,1,1)48 model for

a single server
Standardized Residuals

Time
2 3 4 5 6 7 8

−
4

0
2

4

0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
.4

0
.8

Lag

A
C

F

2 4 6 8 10

0
.0

0
.4

0
.8

p values for Ljung−Box statistic

lag

p
 v

a
lu

e

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

frequency

residuals from (2,1,1)x(0,1,1) process

Figure 4.7: ARIMA diagnostics and cumulative periodogram for (2,1,1)×(0,1,1)48 model for

same single server as Figure 4.6

game durations of over 24 hours. These might be “hardcore” gamers, automated players/bots

or users who have mistakenly left their connections active.

In Figure 4.11 we fit the user duration data for two individual servers to a set of randomly

generated exponentially-distributed data. The Quantile-Quantile plots show that for most of the

data, this is an appropriate model. Towards the tail end of the distribution, there is deviation

from the exponential, but we believe that these are outliers. Some of the session durations that

we observed were in excess of 24 hours. These were probably erroneous measurements, or

perhaps players who had mistakenly left their computers connected to a game server, since it

is unlikely that someone would be able to play a game for such a long period of time. If the

session durations are exponentially distributed, then this agrees with Almeroth and Ammar’s

findings for multicast sessions in [6]. It is also believed that some single-user applications, such

4.4. User duration 58

Standardized Residuals

Time
0 20 40 60 80

−
5

0
5

0.0 0.2 0.4 0.6

0
.0

0
.4

0
.8

Lag

A
C

F

2 4 6 8 10

0
.0

0
.4

0
.8

p values for Ljung−Box statistic

lag

p
 v

a
lu

e

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

frequency

residuals from (1,1,1)x(0,1,1) process

Figure 4.8: ARIMA diagnostics and cumulative periodogram for (1,1,1)×(0,1,1)48 model for

a single server
Standardized Residuals

Time
0 20 40 60 80

−
5

0
5

0.0 0.2 0.4 0.6

0
.0

0
.4

0
.8

Lag

A
C

F

2 4 6 8 10

0
.0

0
.4

0
.8

p values for Ljung−Box statistic

lag

p
 v

a
lu

e

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

frequency

residuals from (2,1,1)x(0,1,1) process

Figure 4.9: ARIMA diagnostics and cumulative periodogram for (2,1,1)×(0,1,1)48 model for

same single server as Figure 4.8

10

100

1000

10000

26/05 24:00 02/06 24:00 09/06 24:00 16/06 24:00 23/06 24:00

S
ec

on
ds

Duration

Figure 4.10: Duration of user’s game

4.4. User duration 59

as voice telephone calls [29], fit an exponential distribution, although other research indicates

that heavy-tailed distributions might be more appropriate [?, 154].
0

50
00

10
00

0
15

00
0

20
00

0

time

du
ra

tio
n

(s
ec

)
0

50
00

10
00

0
15

00
0

sample exponential data

du
ra

tio
n

(s
ec

)

0 5000 10000 15000

0
50

00
10

00
0

15
00

0
20

00
0

sample exponential data

ob
se

rv
ed

 d
ur

at
io

ns
 (

se
c)

0
20

00
40

00
60

00
80

00
10

00
0

time

du
ra

tio
n

(s
ec

)
0

20
00

40
00

60
00

80
00

sample exponential data

du
ra

tio
n

(s
ec

)

0 2000 4000 6000 8000

0
20

00
40

00
60

00
80

00
10

00
0

sample exponential data

ob
se

rv
ed

 d
ur

at
io

ns
 (

se
c)

Figure 4.11: Fitting an exponential distribution to user duration data

Since we had already observed network externality effects in the number of players, we

expected to find a correlation between the duration of a player’s session and the number of

players in that game; a game with more players might be likely to lead to players enjoying

the game more, which should lead to them staying longer. There appears, however, to be little

evidence for this. Figure 4.12(a) shows a boxplot of the number of players at the start of a

player’s session against the duration of their session. There does not seem to be a very high

correlation, and the median duration is relatively constant irrespective of the number of players,

F(1619832) = 2563, p < 0.001,R2 = 0.002194. Comparing the duration to the average number

of players over the first hour of a session (see Figure 4.12(b)) showed a significant correlation,

F(1619760) = 4170, p < 0.001, but this correlation was very slight (R2 = 0.002568). This

might indicate that the absolute number of players in a session is not necessarily a determinant

of when a player decides to leave a session; it may be the behaviour or skill of the specific

players that is more important, or a completely unrelated factor.

4.5. Interarrival times 60

0 2 4 6 8 11 14 17 20 23 26

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Members

D
ur

at
io

n
(s

ec
)

(a) Number of players at start of session

0 2 4 6 8 11 14 17 20 23 26

1e
+

00
1e

+
02

1e
+

04
1e

+
06

Members

D
ur

at
io

n
(s

ec
)

(b) Average number of players over first hour of session

Figure 4.12: Number of players versus duration of session

4.5 Interarrival times

0

10000

20000

30000

40000

50000

60000

70000

80000

Sat 00:00 Sat 00:00 Sat 00:00 Sat 00:00 Sat 00:00 Sat 00:00

S
ec

on
ds

Interarrival time

Figure 4.13: Interarrival times

Figure 4.13 shows the interarrival times between players for one server. As for duration,

there is large variation. Unlike the duration data, interarrival times do not appear to fit an

exponential distribution, as shown in Figure 4.14.

Interarrival times between users for single-user applications have been found to fit a Pois-

son distribution [65, 154]. This is unlikely to be the case for multiuser applications, however,

where the presence of other users may alter user behaviour. Borella [30] and Färber [63] find

that for games, packet interarrival times are highly correlated and bursty. Figure 4.15 shows that

4.5. Interarrival times 61

0
50

0
10

00
15

00
20

00

time

in
te

ra
rr

iv
al

 ti
m

e
(s

ec
)

0
50

0
10

00
15

00
20

00

sample exponential data

in
te

ra
rr

iv
al

 ti
m

e
(s

ec
)

0 500 1000 1500 2000

0
50

0
10

00
15

00
20

00

sample exponential data

ob
se

rv
ed

 in
te

ra
rr

iv
al

s
(s

ec
)

0
50

00
15

00
0

25
00

0

time

in
te

ra
rr

iv
al

 ti
m

e
(s

ec
)

0
50

00
15

00
0

25
00

0

sample exponential data

in
te

ra
rr

iv
al

 ti
m

e
(s

ec
)

0 5000 10000 15000 20000 25000

0
50

00
15

00
0

25
00

0

sample exponential data

ob
se

rv
ed

 in
te

ra
rr

iv
al

s
(s

ec
)

Figure 4.14: Fitting an exponential distribution to interarrival times

this is also true for player interarrivals; there is significant autocorrelation at short lags, which

implies that the arrival of some users will lead to others arriving. Thus, the interarrivals do

not fit the independent arrivals of the Poisson distribution. This could be the result of network

externalities, whereby players observe other players connecting to a game server, and believe

that these players must know something good about that server, and thus other players connect

to the server, anxious to discover this information. It could also be the result of players joining

servers with their friends, for instance, a group of friends may decide out-of-band to play a

game on an agreed server, and hence this group would join a server in a short period of time.

Heavy-tailed and Zipf distributions have been observed for Internet usage behaviour, for

example in World Wide Web usage [50] and in aggregate Ethernet traffic [196]. One method

for visualising a heavy-tailed distribution is a log-log complementary distribution (LLCD) plot,

where the complementary cumulative distribution is plotted on logarithmic axes. Linear be-

haviour in an LLCD plot indicates a heavy-tailed distribution. Figure 4.16(a) shows such a

plot for the interarrival times, and linear behaviour can be observed for the larger observations

(Figure 4.16(b)).

4.5. Interarrival times 62

0 20 40 60 80

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Figure 4.15: Autocorrelation function of interarrival times

1 2 5 10 20 50 100 500

0.
1

0.
2

0.
5

1.
0

x = interarrival time

P
[X

>
x]

(a) full data set

500 1000 1500 2500 3500

0.
1

0.
2

0.
5

1.
0

x = interarrival time

P
[X

>
x]

(b) upper tail

Figure 4.16: Log-log complementary plots of interarrival times

A more rigorous test for heavy-tailed distributions is the Hill estimator [88]. A distribution

of variable X is heavy-tailed if

P[X > x]∼ x−α,as x → ∞, 0 < α < 2. (4.1)

4.6. Summary 63

The Hill estimator can be used to calculate α

α̂n =

(

1/k
i=k−1

∑
i=0

(logX(n−i)− logX(n−k))

)−1

(4.2)

where n is the number of the observations, and k indicates how many of the largest observations

have been used to calculate α̂n. Figure 4.17 shows that α̂ is approximately 1.15.

0 10000 20000 30000 40000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

k

H
ill

 E
st

im
at

or

Figure 4.17: Hill estimator for interarrival times

Comparing the interarrival times to the number of players on the server shows some

evidence of an inversely proportional relationship (Figure 4.18); as the number of play-

ers in a session increases, the interarrival times decrease. This relationship is significant,

F(1605156) = 4.564, p < 0.001. This supports the hypothesis that the number of players is

a determinant in other players’ decisions to join a session. Players might use the rate of new

joins as an indicator of an exciting or attractive game, as they might assume that the other new

players are joining a server as a result of some external knowledge about the server or game.

Hence, players might be more likely to join a server which has a high rate of players joining it.

4.6 Summary

In this chapter we have presented statistical analysis of several session-level traces of popular

multiplayer networked FPS games. We have found that the number of players exhibits strong

time-of-day and network externality effects, and we have fitted an appropriate ARIMA model

which incorporates this autocorrelation and seasonal effects. Players’ duration times fit an

4.6. Summary 64

0 2 4 6 8 11 14 17 20 23 26

1
10

0
10

00
0

Members

In
te

ra
rr

iv
al

 (
se

c)

Figure 4.18: Number of players versus interarrival time

exponential distribution, whereas interarrival times fit a heavy-tailed distribution. The number

of players in a session appears to have a greater effect on players’ decisions to join a session

rather than leave. In many respects we have observed similar behaviour to that seen for multicast

applications, despite the unicast nature of these games. This implies that in the absence of

appropriate multicast data, unicast multipoint applications may be an appropriate substitute.

In this chapter we have demonstrated the following:

• Players consider the number of players in a game when choosing to join a server

• Seasonal and time-of-day effects in the number of players indicate that players prefer to

play at weekends

• Session duration may be exponentially distributed

• Player interarrival times are heavy-tailed

• Game session membership is similar to multicast session membership in terms of duration

and interarrivals

It appears that the presence of other players on a game server is a factor in a player’s

decision to join a server. They therefore consider the number of players on a server when

deciding to join a game. In the next chapter, we will examine whether players also consider the

network conditions of the other players on a game server.

Chapter 5

User behaviour and delay on FPS game servers

5.1 Introduction

In Chapter 4 we demonstrated that game players consider the presence of other players when

connecting to a game server. This is indicated by the autocorrelation between the number of

players on a server. Thus we can be confident that part of our thesis is true, namely that the group

activity that takes place in an FPS game has some bearing on a player’s choice of server. This

group interaction might also have an effect on a user’s tolerances for staying on a server; they

may be willing to tolerate lower levels of network QoS in order to continue with an interaction.

In this chapter we analyse users’ considerations of network conditions when connecting to

game servers. In Chapter 4 game players on a large number of servers were examined. Due

to the dispersed location and ownership of these servers, it was difficult to gather detailed data

about the users on these various game servers. In particular, it was difficult to obtain detailed

information about their network conditions. For the work described in this chapter we ran our

own game servers, which are publicly-accessible via the Internet. By monitoring the behaviour

of players who connect to these servers, and altering the network conditions at the server, more

detailed observations and experiments can be carried out. Some of the results presented in this

chapter can be found in [82].

The purpose of these observations and experiments was to answer the following questions:

• Q1 How do game players respond to the existence of network delay?

• Q2 Do game players consider other users’ delay?

If, as the human factors research indicates, network delay is an important factor in the

usability of a real-time multimedia application, then we would expect that high network delay

would dissuade a user from playing a multiplayer networked game. A player would not choose

to connect to a server to which they have high latency, since this would impair their performance

5.2. Methodology 66

and the playability of the game. In addition, we have already observed in Chapter 4 that the

interaction between the players and the number of players has an effect on user behaviour. Thus,

we might expect that the network delay of the other players on the server would also have an

effect. A player might not want to play on a server where all the other players have a lower

delay, since the player with a higher delay might be disadvantaged.

5.2 Methodology

We recorded users that connected to a game server that we set up at UCL in the UK. The

game server comprised a 900MHz AMD Athlon PC with 256 Mb of RAM, running Linux

kernel version 2.4.2. This was connected to the UCL CS departmental network via 100Base-T

Ethernet. The server ran the Half-Life daemon version 3.1.07, and was later upgraded to 3.1.0.8

and 3.1.0.9 when these newer versions were released. The software updating was necessary

because the corresponding client would only connect to a server which had a equal or greater

software version, and so when new versions of the Half-Life client were released, the server had

to be updated in order to service those players who had chosen to update their clients.

To prevent the possibility of users being prejudiced by connecting to an academic site,

we registered a non-geographic .com domain name, onlinefrag.com1, to use instead of

a cs.ucl.ac.uk address, and the domain name was registered using personal rather than

academic contact details. This non-academic address was used for all out-of-band non-gaming

communication with users, such as the related website and e-mail contact addresses.

The server was advertised to potential players only by using the game’s standard mecha-

nisms, whereby a server registers with a “master server”. These master servers exist to provide

lists of game servers for players; when a player wishes to play a game, they either connect to a

known IP address (obtained through out-of-band information or from previous games), or they

query the master server to find a suitable game server. Since no additional advertisement took

place, a potential game player should have been unable to distinguish between our game servers

and any of the other public servers that are available on the Internet.

The game server was set up to rotate the map, or game level, every 60 minutes, so as to keep

the game interesting for existing and potential players. In addition, players were permitted to

vote for the next map or to extend the current map at each map rotation interval. The number of

players permitted to access the server was arbitrarily set to 24; although the game can potentially

support a much higher number of players, most of the more popular maps for Half-Life only

1A “frag” is the act of killing another player in FPS gaming parlance, and is believed to derive from the “frag-

mentation” of the avatar that is being killed [94]

5.2. Methodology 67

effectively scale to 24 players due to a lack of “spawn points” (locations where players can enter

the map). There were no specific game-based sessions or goals imposed; players were free to

join and leave the server at any time. Thus, when we refer to a session in this chapter, we do

not refer to a game level or task, or the time between a player entering a level and being killed,

but instead a session is the time between a given player joining and leaving a game server.

Player behaviour was monitored at both the application and the network level. For

application-level logging, we used the game server API (Application Program Interface) to take

advantage of the server daemon’s built-in logging facilities (see Section 5.2.2). Packet-level

monitoring used the tcpdump tool [102], which was set to log UDP packet headers only.

Although Half-Life does include features for refusing players admission depending on their

delay, and for compensating for variations in player delays [23], these were disabled on our test

server, since these might influence any results concerning relative delays and performance.

As the server was only advertised using standard mechanisms, it took some time for po-

tential players to become aware of the server and develop a sufficiently large community of

users. Figure 5.1 shows the average weekly number of players on the server over a period of 18

months. It can be seen that it took approximately one month for the server to gain in popularity.

There were three periods when the server lost connectivity, due to power outages at UCL. These

are the three drops in membership in Figure 5.1. After each of these outages, it took between

one and three weeks for session membership to return to its previous levels. For the purposes

of this study, we only examine the periods when session membership was in a steady state.

0

5

10

15

20

25

01/04 01/07 01/10 01/01 01/04 30/06

P
la

ye
rs

Time

Weekly session membership

Figure 5.1: Weekly session membership on a Half-Life server

5.2. Methodology 68

5.2.1 Determining unique users

Many of the issues that we wished to examine require knowledge of which sessions correspond

to which particular users, for example, to allow us to determine the average delay observed by

a particular player across all of their sessions. Such persistent user/session relationships cannot

be determined by network-level traces alone, and session-level data is required. The nature of

most FPS games, however, where any user can connect to any available and appropriate server

with a minimal amount of authentication, means that determining which sessions belong to

which users can be difficult.

Connecting to a Half-Life server is a two-stage process. The client first authenticates with

the so-called “WON Auth Server” (the acronym WON stands for World Oppponent Network,

the organisation that runs the gaming website http://www.won.net, which is owned by

Sierra Software, the publisher of Half-Life). The authentication server issues the player with a

“WONID”, a unique identifier generated using the player’s license key, which is provided with

the CD-ROM media when a user purchases the Half-Life software. There is thus one unique

WONID for each purchased copy of the game, which should correlate to one unique WONID

per user. Once a WONID has been generated, the player can connect to the Half-Life server of

their choice.

Unfortunately, using the WONIDs as a means of identifying unique players proved to be

insufficient. We observed a large number of duplicate WONIDs, indicated by simultaneous use

of the same WONID, or players with the same WONID connecting from highly geographically

dispersed locations. This duplication of WONIDs is probably due to the sharing of license

keys, the use of pirate copies of the game, or malicious worms or viruses which have been

specifically designed to steal these keys from unsuspecting users [182]. A single WONID

can thus represent more than one user. This situation is exacerbated because the game server

program does not reject multiple users with the same WONID from playing simultaneously

(this occurred 1,924 times during the period of this study). In addition, on two occasions the

WON Authentication Server appeared to malfunction, and issued all users with a WONID of

0. Although it would have been possible to modify the server to reject simultaneous duplicate

WONIDs, this would not resolve the problem of different players connecting at different times

with the same WONID, and so rather than reject players, a scheme was needed to determine

which sessions belonged to which different individuals.

For each player that connects to the game server, the following information is logged by the

game: the player’s WONID, their IP address and port number, and the nickname that they have

chosen to use in the game. Of the 49,667 total WONIDs that were observed, 36,820 had unique

5.2. Methodology 69

(WONID, nickname, IP address, port) tuples, and we can be reasonably sure that each of these

represents one unique user. In order to determine their uniqueness of the remaining WONIDs,

we had to make some assumptions about users. We assume that a unique (WONID,nickname)

tuple across all sessions is a single user, and probably has a dynamically-assigned IP address

or multiple access ISPs. In Chapter 4 we used a player’s nickname to distinguish unique users.

By analysing the server logs, we found that users might occasionally change their nicknames,

both between and during sessions, and by looking at all the names used by a particular WONID

and looking for common names it was possible to further isolate potential unique users. For

instance, a user might connect with the default name set by the game (“Player”), and then

realise this and later change their name to their usual nickname, or a player might change their

name to signal other users, e.g. new players would sometimes change their name to “Please

don’t shoot me” or the like. When multiple users with the same WONID were simultaneously

connected we assume that each of these is a different user. The country of origin of each player

was estimated using whois records (see Section 5.3), and when users with the same WONID

connected from different countries on the same day, these were also assumed to be different

users.

5.2.2 Measuring delay

To measure the delay observed by each player we used the game server’s built-in facilities. As

previously discussed, a user in a typical FPS game has the ability to view the “scoreboard”,

which indicates how well the player is doing in relation to the other players, by a metric such

as the number of times that they have killed the other players. In Half-Life, this scoreboard

also includes a “ping” value, which is an indication of the player’s round-trip time to the server.

This measurement is taken at the application-level, calculated between the client and server

applications.

The game server’s logging facilities were modified to record the application-level delay

of all the players every 30 seconds, and to take an additional measurement whenever a player

joined or left the server. Of the total 6,805,217 measurements, we removed the 69,224 measure-

ments with a ping value of 0, assuming that they were errors. We also saw 50,667 measurements

greater than 1,000ms, with a maximum of 184,693ms. We removed these measurements, also

assuming that they were errors, since it is unlikely that any user would be able to play a net-

worked game effectively with a delay of over one second, and certainly not over three minutes.

Moreover, a similar FPS game, Quake III Arena, also assumes that client delays over 1,000ms

are errors, and chooses not to report them to users at all.

5.2. Methodology 70

We did not measure network-level delay, e.g. through ICMP pings, since one of our exper-

imental design criteria was that we did not want to alter the server in any way, or send additional

traffic to players, in case this altered player behaviour or deterred some potential players from

connecting to the server. With over 15,000 other potential servers to choose from, we did not

wish to alter conditions in such a way that players might be driven elsewhere. We initially at-

tempted to use an active measurement system, taking network-level measurements through the

use of ICMP ECHO REQUEST (“ping”) packets. When these network-level measurements

were attempted, users either detected these and complained, or filtered ICMP traffic — it is

common for systems adminstrators to filter ICMP traffic for security reasons, for instance to

prevent “smurf” denial of service attacks [37]. We therefore chose to use a passive measure-

ment system, by using only the measurements that are already provided by the standard game

client and server software. In this way, no additional traffic was required to be generated, and

so users would not notice this and alter their behaviour. This has some benefits in that it is the

application-level delay which the users themselves observe, and thus one would expect that this

would have a greater effect on their behaviour than network-level delay.

Since measurements were being taken at the application level, we would expect that these

measurements would be higher than those taken at the network-level. To estimate the accuracy

of this application-level delay measure, we obtained a list of Half-Life master servers. These

were queried every six hours to produce a list of available Half-Life game servers. Each of

these servers was then queried using the game-specific server query protocol — we used a

game-specific command to query the application-level delay ten times. In addition to this, ten

standard ICMP ECHO REQUEST packets were sent to query the network-level delay of each

server that permitted ICMP traffic (10.75% of the servers did not permit ICMP traffic). Every

six hours, both of these queries were performed, for a total of 161,755 measurements taken

over the course of one month. By looking at the measurements for the servers which allowed

ICMP traffic, a comparison of the application-level and network-level delay measures can be

made. Figure 5.2 shows that the correlation between the two measures is very high — the

correlation coefficient is 0.925. As expected, the application-level delay is typically higher than

the network-level delay measure (this is not always the case since the two measurements are

not taken at exactly the same time, and also because some Internet routers might place ICMP

traffic on a different path to UDP and TCP traffic). On average, the application-level measure

was 7.24% higher than the network-level measure. We can therefore be confident that the

application-level measure provides an appropriate indication of the latency observed by a game

player.

5.2. Methodology 71

0 200 400 600 800 1000

0
20

0
40

0
60

0
80

0
10

00

ICMP delay (ms)

A
p
p
lic

a
ti
o
n
−

le
v
e
l
d
e
la

y
 (

m
s
)

Figure 5.2: Correlation between application-level and network-level delay measurements

5.2.3 Measuring relative delay

Absolute delay bounds might not be that important because players become accustomed to high

delays, or they have no choice because they happen to have poor network connectivity. A more

important delay metric might be the relative delay between players. If one player has a much

lower delay than the other players in the game, they might be able to exploit this advantage, by

attacking players before they are able to respond.

Relative delay may be perceived by a player in a number of ways. A player might dislike

it if the other players on a server have a wide range of delays — for instance there might be

some players with very low delays, and others with extremely high delays, which might make

a player with a intermediate level of delay unsure about the responsiveness of the other players,

since they would not know whether to expect a player to respond very quickly, or very slowly.

A player might also be worried about relative delay if they have a very different delay to the

other players on the server. This could take the form of having a much higher delay than the

player with the lowest delay on the server, or by having a higher delay than the average player

on the server.

With this in mind, we chose four metrics with which to measure the relative delay between

the players. We refer to these as follows:

5.2. Methodology 72

1. stddev — the standard deviation of the delay experienced by all the players in a given

user’s session.

2. avgratio — the ratio of a user’s delay compared with the average delay of all the players

on the server.

3. topratio — the ratio of a user’s delay compared with the player with the lowest delay on

the server.

4. rank — the “delay rank” of the user compared with the other players on the server.

The first three measures of relative delay, stddev, avgratio and topratio are nominal:

• for a given player i, stddev is calculated by taking the average delay observed for each

of the players who connects to the server during player i’s session. stddev is the standard

deviation of all these delay values.

• avgratio is i’s average delay, divided by the average delay of all the players who connect

to the server during i’s session.

• topratio is i’s average delay, divided by the average delay of the player with the lowest

delay of the players who connect to the server during i’s session.

rank is an ordinal measure. rank was calculated by ordering the players at each delay

measurement period by delay to produce a rank r, and then normalising this according to the

number of players on the server. Thus, the player with the highest delay would always receive

a delay rank of 1, whereas the player with the lowest delay would have a rank of 0. The

intuition for examining an ordinal measure of relative delay was that a player might not care

about the exact ratio of their delay compared with that of the other players, but they might care

that their delay is higher than a certain proportion of the players on the server. For instance,

a user might be able to play on a server when they have a delay twice as high as that of the

lowest player on the server, so long as they have a lower delay than more than half of the

remaining players. Additionally, the question of whether users’ preferences and utility functions

are cardinal or ordinal is a long-standing debate in economics and one of the foundations of

neoclassical economic theory, and it is unclear whether absolute or relative values should be

used to calculate user preferences.

5.2.4 Inferring user preferences

User preferences can be measured implicitly or explicitly. McCarthy [133] outlines the differ-

ence between these two types of measurement: “there is a tradeoff between implicitly infer-

5.2. Methodology 73

ring preferences, which may be inaccurate and perceived as invasive, and explicit requests for

preference information, which may be burdensome and imposing (and therefore not used by

some/most inhabitants)”. Since the measurements were taken on a passive basis, we did not

directly ask users whether they enjoyed a game or not. Thus, we chose to implicitly infer users’

preferences for a game. There are three occurrences which can be analysed, from which we can

infer user preferences:

• Whether a user joins a game server

• How long a user plays on a game server

• When a user leaves a game server

We can infer that a user enjoys a game if:

• A user joins and remains on a server

• A user repeatedly returns to a server

Conversely, we can infer that a user dislikes a game if:

• A user joins and immediately leaves a server

• A user leaves a server because of a change in conditions

Therefore, we can infer the preferences of the users by:

• comparing the players who join and immediately leave a server to those who join and

remain on the server

• examining the network conditions which lead a user to stay on a server

• examining the network conditions when a user leaves a server

We measure how long users remain on the server, and how often users return to the server.

We use this information to define two classes of user:

• “regulars” — players who return to the server more than ten times, and whose average

session duration exceeds one minute

• “tourists” — players who connect to the server for less than one minute

5.3. The user population 74

5.3 The user population

The data that is analysed here derives from running the server between 21 March 2001 18:33

GMT and 13 September 2001 11:06 BST. In this time we observed 133578 sessions (a single

user joining and leaving the server). Using the heuristics described in Section 5.2.1 to determine

unique users, we estimate that the 49,667 unique WONIDs that were observed actually represent

79,880 different users, due to cheating and the sharing of license keys.

A simple method for determining the general geographical location of users was used.

First, a DNS query on each player’s IP address was performed. For those IP addresses that re-

solved to hostnames with geographical Top Level Domains (TLDs), we assumed that this TLD

is the player’s country of origin. For the remaining IP addresses which either failed to resolve

to a hostname, or resolved to non-geographic TLDs (.com, .net, .org, .mil, .edu, .gov and .int) a

whois [81] query was performed, and we assume that the country listed in the whois database

is the player’s country of origin. To save time, DNS and whois queries were cached, and to

reduce load on the whois servers we used the Regional Internet Registries’ list of address allo-

cations [165] to get an idea of which whois server to query first (although there are techniques

for whois servers to refer queries to the appropriate server [195], these do not seem to have

been implemented by many whois server operators). Problems with using TLDs, which do not

necessarily reflect the geographical location of a host, are well-known [142]. We have tried to

account for some of this noise by assuming that some of the geographic TLDs which are avail-

able for registration by residents of any country, such as .nu, .to and .tv, are non-geographic, and

used the whois database for these. On the other hand, relying solely on the whois databases can

also result in erroneous conclusions. Many multinational ISPs have the same whois entries for

all their national subsidiaries, and a reverse DNS lookup on the IP address can help to distin-

guish between, for example, Libertysurf’s British and French users (Libertysurf provides all of

its users with addresses that resolve to hostnames ending in libertysurf.fr, but for some

of these addresses, the whois database entries locate them in the UK). Moreover, more compre-

hensive methods for determining the geographical location of a host, such as GeoPing [148],

require intrusive measurements such as query packets directed at the hosts in question, and

would have been inappropriate for our passive measurement system.

There were a total of 39,955 IP addresses observed on the server. Figure 5.3 shows the

total for each inferred country of origin for these addresses, and for the unique players observed

on the server. Although the server was located at UCL in the UK, both the majority of the IP ad-

dresses that connected to the server, and the actual players, appear to come from the USA. This

predominance of US players may be due to JANET’s (the UK’s academic network) large transat-

5.3. The user population 75

lantic links (6x155Mb/s links from Teleglobe in London to Teleglobe in New York [104]). Only

1.12% of the US addresses, however, resolved to academic .edu hostnames, so JANET’s con-

nectivity to the American academic networks does not seem to have been an influencing factor

in player behaviour (although we lack statistics for the overall incidence of gameplay amongst

academic and non-academic networks). This is also true for the UK, and of the 12,514 UK ad-

dresses we saw, only 27 of these appeared to be from academic institutions (i.e., had hostnames

which ended in ac.uk). This might perhaps be due to successfully-enforced university regula-

tions against playing games. Whilst perhaps surprising, since we might expect more academic

users on servers which are connected to an academic network, this low proportion of academic

users means that our population sample can be considered more representative of Internet users

as a whole.

After the USA, the UK has the second-highest number of players on the server. This is

what we would expect, since the servers are located in the UK. Surprisingly, the fourth-highest

number of players comes from Taiwan, despite Taipei being physically located over 6,000 miles

from London and players from Taiwan having an average delay of 475.12ms.

U
ni

te
d

S
ta

te
s

U
ni

te
d

K
in

gd
om

G
er

m
an

y

T
ai

w
an

B
el

gi
um

C
an

ad
a

F
ra

nc
e

O
th

er

S
w

ed
en

S
pa

in

N
et

he
rla

nd
s

A
us

tr
ia

D
en

m
ar

k

S
w

itz
er

la
nd

F
in

la
nd

S
ou

th
 K

or
ea

C
hi

na

N
or

w
ay

P
la

ye
rs

0

5000

10000

15000

20000

25000

All IP addresses
Players

Figure 5.3: Location of all observed IP addresses

Removing “tourists” from the data shows that US players still dominate. Figure 5.4 shows

the location of players whose average session duration was less than one minute, and those

5.3. The user population 76

who played more than ten times. It can be seen that most Taiwanese players stay for less

than one minute — it would appear that they are happy to browse servers, but then they leave,

perhaps due to their higher propagation delay compared with the geographically-closer US and

European players. This behaviour is strange, however, given that we expect that most players

tend to select a server through a server browser (although there is such a browser built into

the Half-Life client, which is shown in Figure 2.4, players may also choose to use third-party

utilities such as GameSpy [72] or The All-Seeing Eye [4] which can query a number of different

games simultaneously). Such server browsers estimate the delay to a given server before the

player actively connects to it. The fact that players connect to servers in spite of high delays

might indicate that the composition of the game (i.e., the current players and their behaviour) is

more important than an individual player’s delay.

U
ni

te
d

S
ta

te
s

U
ni

te
d

K
in

gd
om

G
er

m
an

y

S
w

ed
en

B
el

gi
um

S
pa

in

N
et

he
rla

nd
s

F
ra

nc
e

C
an

ad
a

T
ai

w
an

A
us

tr
ia

D
en

m
ar

k

S
w

itz
er

la
nd

F
in

la
nd

N
or

w
ay

P
la

ye
rs

0

5000

10000

15000

20000

25000

30000

All
Average duration <= 1 min
Regular players (>= 10 visits)

Figure 5.4: Location of “tourist” and “regular” players

Examining the location of only the regular players who played more than ten times (Fig-

ure 5.4) shows a larger proportion of European players, as we would expect. There is still a

large number of players from the US, however, in spite of the added transatlantic network de-

lay, although the US does not make up the largest single country of origin for regular players.

The Taiwanese players are again interesting — although many Taiwanese players connect to

5.3. The user population 77

the server, it appears that most of these players then leave and do not remain for more than one

minute.

The delays of players from different countries also fail to explain the prevalence of Amer-

ican players. Figure 5.5(a) produces few surprises; European players have lower delays than

those from North America. Players from the UK, however, appear to have higher delays than

those from most other European countries, in spite of their geographical proximity. The same

is true even when looking at the regular players (Figure 5.5(b)). The high delay for the regular

players from .th (Thailand) is attributable almost entirely to one player, who in spite of a min-

imum delay of 676.87ms, was seen connecting to the server 18 times with an average duration

of 4022.88 seconds. Strangely, the UK is not the country with regular players with the lowest

delay. The country with the lowest delay is Estonia, and average players from the UK have a

relatively high level of delay of 183.79ms.

be nl se dk si at fi
hu ch ee no fo lv fr gi uk it pt de lu bs ie sk es pl ca

li cz et us

Delay by country of origin

A
ve

ra
ge

 d
el

ay
 (

m
s)

0

200

400

600

800

(a) Delays of all players by country (limited to 250ms)

ee be si nl se dk fr at ch no
fi

hu gb ie de es cz ca us it pl il br kr ro jp id tw cn ve au th

Delay by country of origin of regular players

A
ve

ra
ge

 d
el

ay
 (

m
s)

0

200

400

600

800

(b) Delays of regular players

Figure 5.5: Delay of players sorted by their country of origin

One reason for the large number of US players might be that this is a reflection of the high

proportion of US-based hosts on the Internet. To determine whether this is true, we compare the

proportion of addresses from each TLD with the proportions seen in the Internet Domain Survey

(IDS) [99] (we ignore TLDs observed less than 3 times to avoid a bias against non-significant

results). Figure 5.6 shows that in fact we see a smaller than expected proportion of addresses

from non-geographic TLDs such as .net and .com, and a higher proportion of addresses from

European TLDs such as .uk and .de. There are, however, also a higher proportion of addresses

from several non-European TLDs, including Japan and Canada. It is therefore unclear whether

5.3. The user population 78

the high number of US-based players is due to the predominance of US hosts on the Internet.

Moreover, it should be noted that since the IDS only estimates the location of hosts by hostname,

it might not be as accurate as the DNS/whois system that we have used. For instance, for the

estimation of hosts from Taiwan, only 19.03% of the Taiwanese addresses actually resolved to

a hostname ending in .tw, with 38.76% of the addresses not resolving at all, and the remainder

resolving to non-geographical TLDs.

ne
t

co
m

ed
u jp ca de uk us it

au nl fr
or

g tw se br es fi
go

v
m

x
un

kn
ow

n

%
 o

f I
P

 a
dd

re
ss

es

0

5

10

15

20

25

30

Games players
IDS

Figure 5.6: Observed TLDs compared with the IDS

Another reason for the number of US players might be a lack of available game servers in

the USA. To determine whether this might be the case, the master Half-Life servers were polled

from two sites in Europe and the USA every six hours for a period of nine months. Each game

server on the list provided by the master servers was then polled to determine the application-

level delay between the server and the polling site. The servers that could be reached were

ordered by delay, and then the ranking, i.e., the position in this ordered list, of the two Half-Life

servers at UCL were calculated. This methodology should be representative of a player using

an in-game server browser to choose a server.

Table 5.1 indicates that, as might be expected, there were approximately 2500 servers with

lower delay than the servers at UCL available to the US site. The polling site in the USA

was based on the east coast (zealand.nge.isi.edu, located in Washington, DC), and we

5.4. Joining a server 79

Polling site Europe USA

Mean Median Mean Median

Number of servers on master server list 22574.09 22586 22516.71 22529

Number of reachable game servers 6430.22 6521 6534.85 6645

Delay to hlife.onlinefrag.com 14.72 8.70 110.09 88.69

Rank of hlife.onlinefrag.com 253.40 62.00 2825.97 2513.50

Delay to hlife2.onlinefrag.com 14.19 6.60 112.04 92.89

Rank of hlife2.onlinefrag.com 234.09 64.00 2780.51 2530.00

Table 5.1: Available servers in Europe and the USA

expect that the number of servers with lower delay would be higher for sites elsewhere in the

USA. The number of game servers reachable by the two sites was similar, at just under 30% of

the total number of servers advertised by the master server (this figure is remarkably low, and

possible reasons for this are discussed with further details in [83]).

To summarise, the user population that we have observed on the game servers predomi-

nantly come from America and Europe, in spite of the propagation delay incurred by the transat-

lantic crossing. The high number of American players cannot be explained by a lack of game

servers in the USA, nor by the predominance of US-based hosts on the Internet. One possible

conclusion is that the drawbacks of the high delay are compensated for by other factors, such

as the interaction between the players on the server.

5.4 Joining a server

In this section we analyse the conditions which lead a user to decide to play on the game server.

In particular, we analyse user behaviour in the first minute of a session. If a user leaves within

one minute (i.e., a “tourist”), we infer that they did not find the server appropriate. This one

minute boundary was chosen arbitrarily, but we believe that one minute should be long enough

for a user to decide whether or not they intend to stay on the server.

Figure 5.7 shows the delays of all the players that were observed on the server, including

the delays of “tourists” — those players who connect to a server, examine the status of the game

and then choose to leave. Figure 5.8 shows the distribution of delay for all the players compared

with those who stay less than a minute, those who stay more than ten minutes, and those who

play for in excess of one hour. It can be seen that the delay of those players who stay less than

a minute is generally higher than those who stay for longer. Of the players who connect with

a delay of over 400ms, only 10.09% stay for longer than one minute. This difference in delay

5.4. Joining a server 80

Distribution of average delay for all users

Delay(ms)

F
re

qu
en

cy

0 200 400 600 800 1000

0
20

00
40

00
60

00
80

00

Figure 5.7: Distribution of players’ average delay

Players Mean delay

(ms)

95th

percentile

25th

percentile

50th

percentile

75th

percentile

All 231.70 546 112.25 194.29 308.0

Regular 144.02 342.45 69.35 113.89 197.19

Tourists 294.45 664 149.38 244 410.92

Table 5.2: Overall delay results

between the tourists and other players is significant, t(6462) = 26.91, p < 0.01. This implies

that delay may be a determinant in a player’s decision to join a server; players with high delays

to a particular server will join, observe their high level of latency, and then choose to leave the

server and perhaps look elsewhere for a more appropriate game server.

To further test whether users can detect and respond to the presence of network delay, two

identical Half-Life game servers were set up, comprising 1.2GHz AMD Athlon PCs with 256

Mb of RAM, running Linux kernel version 2.4.9 and Half-Life version 3.1.0.8. These were

connected to the public Internet via a gateway machine, which was used to introduce delay into

the network. The gateway machine was a 1GHz AMD Athlon PC, also with 256 Mb of RAM

and running Linux kernel version 2.4.9.

5.4. Joining a server 81

0 200 400 600 800 1000

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

Distribution of player delays

delay(ms)

D
en

si
ty

All players
Duration >= 1hr
Duration >= 10min
Duration <= 1min

Figure 5.8: Kernel density function of players’ delay

The iptables and libipq interfaces in Linux [144] were used to introduce delay into the

network. An iptables filter was set up to queue packets which were addressed to the IP address

and port number of the game server. These packets were queued in userspace and placed back

on the queue after the desired period of time had passed. Initial experiments attempted to

use the Dummynet [166] and NISTNet [147] network emulation packages for FreeBSD and

Linux respectively, but these were found to be inappropriate. Dummynet lacked sufficient time

resolution, and could not provide an accurately controllable amount of delay, whilst NISTNet

was unreliable, and as it ran in kernel-space, would lead to the gateway machine completely

freezing in the event of a crash. This was undesirable since experiments would run for weeks at

a time, and if a machine crashed and was not rebooted immediately, the lack of available servers

would deter players, as discussed in Section 5.2.

The servers were left to run for two months to build up a regular userbase. In the month

following this, 50ms of additional delay was introduced on to one of the servers. This additional

delay alternated between the two servers, so that users would not begin to ignore one of the

servers.

Figures 5.9 and 5.10 show the number of players on the two servers during a representative

sample of the experiment (the data in the two graphs have been windowed by a 60 minute period

5.4. Joining a server 82

0

5

10

15

20

25

26/04 26/04 27/04 27/04 28/04 28/04 29/04 29/04 30/04

P
la

ye
rs

Time

Session membership

hlife.onlinefrag.com
hlife2.onlinefrag.com

(a) Additional delay to hlife.onlinefrag.com

0

5

10

15

20

25

01/05 02/05 03/05 04/05 05/05 06/05 07/05 08/05

P
la

ye
rs

Time

Session membership

hlife.onlinefrag.com
hlife2.onlinefrag.com

(b) Additional delay to hlife2.onlinefrag.com

Figure 5.9: Players on two servers with differing levels of network delay

for clarity). Figure 5.9 shows that in the presence of additional delay, the number of players that

connect to a server drops markedly. From 26/04/02 to 02/05/02, hlife.onlinefrag.com

(the solid line) had additional delay, and so there are fewer players on that server (Figure 5.9(a)).

From 02/05/02 to 08/05/02, hlife2.onlinefrag.com (the dashed line) had additional

delay, and the situation reverses (Figure 5.9(b)). The data were windowed to create a time-series

with a frequency of one minute. A paired t-test on this time series indicates that the difference

5.4. Joining a server 83

0

5

10

15

20

25

16/06 17/06 18/06 19/06 20/06 21/06

P
la

ye
rs

Time

Session membership

hlife.onlinefrag.com
hlife2.onlinefrag.com

Figure 5.10: Players on two servers with no additional network delay

between the number of players on the two servers is significant, t(2016) = 59.65, p < 0.01.

Figure 5.10 shows that by comparison, in the absence of any additional delay, the difference in

the number of players on the two servers is insignificant, t(4591) = 1.66, p > 0.05. We can thus

conclude that network delay does have an effect on a user’s decision to join a game server.

5.4.1 Relative delay

As with absolute delay, we compare the relative delay metrics for the tourist and regular play-

ers, to determine whether relative delay has an effect on a player’s decision to join the server.

Figures 5.11(a), 5.11(b) and 5.11(c) show the distribution of the nominal measures of relative

delay, stddev, avgratio and topratio for tourist and regular players. Players with delays over

the 95th percentile of 546ms have been removed.

For topratio (Figure 5.11(b)), peaks can be seen towards 0 and at 1. This is because when

there are a small number of players on the server, topratio will tend to 0 or 1 depending on

whether the player has a high or low relative delay; when there are only two players on the

server, then the player with the lower delay will have a topratio of 1, whereas the players with

the higher delay will have a topratio ≈ 0.

To examine whether the distributions of the relative delay metrics differ between those

players who choose to stay and those who leave, we use the Wilcoxon rank sum test, since

Figures 5.11(a)-5.11(c), and the Shapiro-Wilk test, indicate that the distributions are not nor-

mal. All three nominal relative delay metrics are found to have significant differences be-

tween tourist and regular players. For stddev, the value of the Wilcoxon rank sum statis-

5.4. Joining a server 84

0 100 200 300 400

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

Distribution of stddev

stdev

D
en

si
ty

Regular players
Tourist players

(a) stddev for regular and tourist players

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Distribution of topratio

topratio

D
en

si
ty

Regular players
Tourist players

(b) Distribution of topratio for regular and tourist players

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

Distribution of avgratio

avgratio

D
en

si
ty

Regular players
Tourist players

(c) Distribution of avgratio for regular and tourist players

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Distribution of delay rank

delay rank

D
en

si
ty

Regular players
Tourist players

(d) Distribution of rank for regular and tourist players

Figure 5.11: Relative delay for regular and tourist players

tic W = 43913156, p < 0.01. For topratio, W = 51489024, p < 0.01, and for avgratio,

W = 39398308, p < 0.01.

Figure 5.11(d) shows the delay ranks of both tourist and regular players. As with topratio,

we see peaks towards 0 and 1. Tourist players rarely have a low rank — they tend to have

higher delays than the other players on the server. Many regular players, on the other hand,

have a lower delay compared with the other players. A Wilcoxon rank sum test shows that, as

with the nominal relative delay measures, the difference in delay ranks between the two groups

of players is significant, W = 41384968, p < 0.01.

5.4. Joining a server 85

5.4.2 Number of players

In Chapter 4 we showed that the number of players on a server is a consideration for users. To

verify this on our own servers, we calculate the average number of players on the server in the

first minute of each player’s session. We then compare this value over the sessions where a

player leaves within one minute, with those where a player remains on the server. As we might

expect, players tend to leave when there are fewer players on the server, t(5759) = 8.0981, p <

0.01.

The number of players on a server might also affect users’ tolerances for delay. If there are

many players on a server, the excitement and interest that this can generate for the participants

might lead them to tolerate higher levels of absolute and relative delay, since they are interested

in the game and might prefer to remain in it. In other words, as more players join the server,

players might tend to become less “fussy” about their delay, as the game gets more exciting.

We define a player’s fussiness as:

f (n) = dmin(n)/dmax(n) (5.1)

where n is the number of players on the server, dmin is the minimum delay observed on the

server, and dmax is the maximum delay.

To examine fussiness, we looked at our Half-Life game server over one month, and win-

dowed the number of players on the server at five minute intervals. At each five minute interval,

we calculate fussiness by counting the number of players on the server and compare this with

the minimum delay observed by a player dmin and the maximum delay dmax.

2 4 6 8 10 12 14 16 18 20 22 24

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Number of players

F
us

si
ne

ss

Figure 5.12: Fussiness versus the number of players on a server

5.5. Staying on a server 86

Figure 5.12 shows a plot of the fussiness values, compared with the number of players on

the server. It can be seen that fussiness tends towards 0.125. As the number of players on a

server increases, it appears that users are willing to tolerate higher relative delays, up to a limit

of eight times the lowest delay on the server.

2 4 6 8 10 12 14 16 18 20 22 24

10
0

20
0

30
0

40
0

50
0

Number of players

M
ax

im
um

 p
la

ye
r

de
la

y

Figure 5.13: dmax versus the number of players on a server

As the number of players rises, the maximum of the delays observed by the connected

players rises. The correlation between dmax and the number of players n is significant, R2 =

0.2176, p < 0.01. It would appear that players with higher delay were more likely to stay when

the number of players was higher — perhaps the increased enjoyment from playing with more

people offsets the deterimental effects of the network delay. To see if this is the case, for each

unique player with an average delay greater than the average, we examine the connections where

their delays are similar (within a 5% region), and compare the sessions where they choose to

stay on the server with those where the choose to leave. The number of players on the server

when players choose to stay is significantly higher, t(213) = 5.6979, p < 0.01.

5.5 Staying on a server

In this section we examine the network conditions that affect the length of a player’s session.

We might expect that with lower delay, players would tend to stay on a server longer, since

lower delay would lead to a more enjoyable experience for the players, who would then wish

to remain in the game for a longer period of time. Examining the relationship between the

duration of a player’s session and their average delay over a session, however, shows very little

correlation: R2 = 0.03776, p < 0.01 (Figure 5.14).

5.5. Staying on a server 87

0 5000 10000 15000 20000

0
10

0
20

0
30

0
40

0
50

0

Duration (ms)

D
el

ay
 (

m
s)

Figure 5.14: Players’ average delay versus session duration

Since session duration is exponentially distributed, the tails, i.e., the sessions with ex-

tremely high durations, may obscure any relationship between duration and delay. Examining

only those sessions with duration of less than one hour (Figure 5.15), however, also shows little

correlation, R2 = 0.04591, p < 0.01.

0 500 1000 1500 2000 2500 3000 3500

0
10

0
20

0
30

0
40

0
50

0

Duration (ms)

D
el

ay
 (

m
s)

Figure 5.15: Players’ average delay versus session duration where duration ≤ 60 min

We were also unable to find any correlation between session duration and relative delay

(Table 5.3). It would therefore appear that the length of time that a user plays on the server is

not related to their network delay. To further analyse this we look at the conditions at the time

when a player chooses to leave the server.

5.6. Leaving a server 88

Relative delay metric R2 p-value

stddev 0.03425 < 0.01

avgratio 0.0322 < 0.01

topratio 0.004156 < 0.01

rank 0.002881 < 0.01

Table 5.3: Relationship between relative delay and session duration

5.6 Leaving a server

In this section, we examine the network conditions that cause a player to leave a server. As we

have seen that the individual player’s level of delay has an effect on their decision to join a game

server, we might expect that a player’s delay would affect their decision to leave the server. A

sudden increase in delay might lead a delay-sensitive player to become frustrated with the game,

and perhaps to decide to disconnect and try and find another game server. Similarly, if relative

delays are a concern for players, we would expect that new players joining the server with much

lower delays than an existing player might lead that player, who would then have a much higher

relative delay, to leave the server.

5.6.1 Number of players

As with joining a server, we examine the number of players on the server when a player leaves.

Since we have observed that players tend to stay when there is a higher number of players, we

might expect the converse to be true; that a decrease in the number of players might lead other

players to leave. For each player’s session of duration d, we calculate the average number of

players on the server in the first d−1 minutes of the session, and compare this with the average

number of players in the last minute of a player’s session. As expected, the number of players

in the final minute is lower, t(53822) = 73.5723, p < 0.01. The difference between the number

of players in the final minute and the rest of the session is very small (difference = 0.9072952),

which affirms the findings of Section 4.4, where we noted that the correlation between a user’s

session duration and the number of players on the server was very small, but positive.

5.6.2 Absolute delay

To examine the effects of absolute delay on a player’s decision to leave a server, for each

player’s session of duration d, where d ≥ 10 min, we calculate the average delay in the first

d − 1 minutes of the session, and compare this with the average delay in the last minute of a

player’s session. If absolute delay has an adverse effect on a player’s game and causes them to

leave, then the delay in the last minute should be higher than that in the first d − 1 minutes of

5.6. Leaving a server 89

−30 −20 −10 0 10

0
.0

0
0
.0

5
0
.1

0
0
.1

5

Difference in the number of players in the last minute of a session

N = 53823 Bandwidth = 0.2568

D
e
n
s
it
y

Figure 5.16: Number of players in the last minute of a session subtracted from the number of

players in the rest of session

the session. The average delay in the last minute, however, is significantly lower, difference =

8.514839, t(51884) = 26.7843, p < 0.01. This is the opposite of what was expected, and thus

implies that delay, or as we had speculated, a sudden increase in delay, is not a determinant in a

user’s decision to leave a server.

To further examine the effects of delay on a user’s decision to leave a server, an experiment

was carried out on our two public game servers over one month. Every two hours, an additional

level of delay was added to one of the servers for ten minutes. The other server had no additional

delay, to act as a control. The exact timing of these additional delay periods varied randomly

within a 20 minute time period, so that players would not notice a regularly occurring increase.

The additional level of delay varied between 25 and 250 milliseconds — the upper bound of

250ms was chosen because this approximated the mean delay, and thus would be an increase of

100% for some players, which we assumed would be high enough to cause players to leave the

server.

Figure 5.17 plots the percentage of players on the server that choose to leave in the ten

minute period with added delay, against the level of additional delay (where 0 on the x-axis

represents the control server with no additional delay). As the level of additional delay in-

5.6. Leaving a server 90

0 25 50 100 150 250

0
20

40
60

80
10

0

Players leaving a server as a result of additional delay

Additional delay (ms)

P
er

ce
nt

ag
e

of
 p

la
ye

rs
 w

ho
 le

av
e

se
rv

er

Figure 5.17: Players leaving a server as a result of additional delay

creases, there was little change in the percentage of players that chose to leave the server, which

remained approximately 25-30%, even on the server with no additional delay.

The delay during the period with additional delay of the players who chose to leave the

server (mean = 296.54ms) was significantly higher than that of those who chose to stay (mean

= 250.34ms), t(1507) = 3.7246, p < 0.01. A rise in delay might therefore only lead a player to

leave a game when the additional delay increases a player’s delay beyond an absolute threshold.

We calculate adddelay, the increase in delay caused by the additional delay by considering a

player’s delay during a session without the additional delay, divided by the player’s delay during

the session with the additional delay. There was no significant difference in adddelay between

those players who left (adddelay = 0.7711) and those players who stayed (adddelay = 0.7735),

t(2113) = 0.1065, p = 0.9152, which indicates that a proportional increase in a player’s delay

has little effect.

Players who have played for a longer time might not want to leave the game, even in

the presence of higher delay, since they may have been playing for a sufficiently long time to

get engrossed in the virtual world. We examined the session duration prior to a period with

additional delay of players who chose to stay and those who chose to leave. The duration of the

players who chose to stay on the server was significantly higher, t(3342) = 4.7339, p < 0.01,

with players who stayed having a mean duration of 2613.49 seconds, whilst players who chose

5.6. Leaving a server 91

to leave had a mean duration of 1796.54 seconds. The longer a player remains in the game, the

more they might be enjoying the game, and hence the less likely they would want to leave, even

in the event of additional network delay.

Regular players were no less likely to leave the server. The number of times a player had

played on the server prior to an additional delay period was not significantly different between

those who stayed (11.55) and those who left (10.87), t(2895) = 1.12, p = 0.2628.

One reason why players were not leaving the server in spite of the additional delay might be

that they were unable to notice the delay. Analysing players’ actions within the game indicates

that this is unlikely, however. The average number of kills per minute made by players in

periods with no additional delay was 1.430, which was significantly higher than the average

of 0.6042 during the periods with additional delay, t(3937) = 17.6115, p < 0.01. The average

number of times a player was killed per minute was 1.104 in the presence of additional delay,

which was significant higher than the average of 0.0708 during the periods with no additional

delay, t(3467) = 67.499, p < 0.01. The additional delay thus had a significant effect on players’

performance, which we would expect they would notice. Although they could notice the delay

and their performance was degraded, players were not inconvenienced to the extent that they

would leave the server.

5.6.3 Relative delay

To examine whether relative delay affects a player’s decision to leave a server, for each nominal

relative delay metric, we look at the value in the last minute of a player’s session (metricl)

divided by the value for the entirety of the session (metrice). A result which differs from 1

should indicate that there is a change, which might imply that this is a factor in the user’s

decision to leave the game.

For each of the nominal relative delay metrics, there was a significant difference be-

tween metricl and metrice. avgratiol differed from avgratioe by 0.03742295, t(11650) =

12.9954, p < 0.01. topratiol differed from topratioe by 0.06407042, t(11650) = 32.9701, p <

0.01. stddevl differed from stddeve by 9.728487, t(11650) = 17.099, p < 0.01. Although sta-

tistically significant, the difference in means between metricl and metrice are very small, as can

be seen in Figures 5.18(a)-5.18(c).

Relative delay rank is measured on a scale which includes 0, so dividing is impractical.

Instead we subtract the rank in the last minute of a player’s session from rank over a player’s

session. Figure 5.18(d) indicates that rankl is marginally higher than ranke — a paired t-test

shows the differences in means is 0.0565336, t(11650) = 23.299, p < 0.01.

5.6. Leaving a server 92

0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Difference in stddev in the last minute of a player’s session

N = 11651 Bandwidth = 0.05587

D
en

si
ty

(a) stddev in the last minute of a session / stddev

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

Difference in avgratio in the last minute of a player’s session

N = 11651 Bandwidth = 0.037

D
en

si
ty

(b) avgratio in the last minute of a session / avgratio

0 2 4 6 8

0.
0

0.
5

1.
0

1.
5

2.
0

Difference in topratio in the last minute of a player’s session

N = 11651 Bandwidth = 0.04309

D
en

si
ty

(c) topratio in the last minute of a session / topratio

−1.0 −0.5 0.0 0.5 1.0

0
1

2
3

4
5

Difference in rank in the last minute of a player’s session

N = 11651 Bandwidth = 0.02151

D
e
n
s
it
y

(d) rank in the last minute of a session - rank

Figure 5.18: Relative delay effects in the last minute of a player’s session

In Section 5.6.2 an experiment was carried out whereby delay was introduced to all the

players on the server, to see whether this would cause them to leave the game. We could

not conclude that additional delay caused players to leave the server. One reason for this,

however, might be that all the players were experiencing additional delay, and therefore they

might believe that this was a level playing field, since everyone was being affected by the delay.

If only some players were experiencing additional delay, they might feel disadvantaged, and

perhaps choose to leave the server.

5.6. Leaving a server 93

To determine whether players would leave if additional delay caused them to have higher

relative delays, the experiment described in Section 5.6.2 was repeated, but instead of intro-

ducing additional delay to all the players, 20% of the players were randomly chosen to receive

additional delay.

25 50 100 150 250

0
20

40
60

80
10

0

Players leaving a server as a result of additional relative delay

Additional delay (ms)

P
er

ce
nt

ag
e

of
 p

la
ye

rs
 w

ith
 a

dd
iti

on
al

 d
el

ay
 w

ho
 le

av
e

se
rv

er

Figure 5.19: Players leaving a server as a result of additional relative delay

Figure 5.19 shows the percentage of players who received additional delay that left the

server when this additional delay was introduced. The average percentage of players who left

was 32.55%. In the experiment where all the players received additional delay, an average

of 33.96% left the server (Figure 5.17). We cannot reject the hypothesis the means of these

two measures are the same, t(258) = 0.4858, p = 0.6275. It would appear that an increase in

relative delay is no more a component in a player’s decision to leave a server than an increase

in absolute delay.

Players who had been playing for longer were again less likely to leave the server in the

event of additional delay, t(399) = 4.5723, p < 0.01. Players who received additional delay

and chose to stay had an average duration of 2234.102 seconds, whilst those who left had an

average duration of 1304.488 seconds.

As with the addition of delay to all the players, players who received additional delay

performed worse during these periods. The average number of kills per minute in the absence

of additional delay was 1.456, as opposed to 0.6233 with additional delay, which is a significant

5.7. Summary 94

difference, t(3035) = 15.4988, p < 0.01. The number of times that a player was killed also

increased significantly under additional delay, from an average of 0.6042 times per minute to

1.430, t(3937) = 17.6115, p < 0.01.

Adding delay to some of the players on the server created effects which were similar

to those when delay was added to all of the players on the server. We are thus unable to

conclude that additional relative delay causes a player to leave a server, in spite of the noticeable

detrimental effects on player performance.

5.7 Summary

In this chapter we have analysed the delay characteristics of players connecting to publicly

available Half-Life game servers. By examining the delays when a player chooses to join a

server and leave a server, and by inserting additional delay into the path between a player and

the game server, we have inferred users’ preferences towards network delay.

In this chapter, we have indicated the following:

• Players on our servers have a mean absolute delay which is approximately 250ms

• Absolute delay is a determinant in a player’s decision to join a server

• There is little relationship between delay and a player’s session duration

• Absolute delay has little effect on a player’s decision to leave a server

• Players who have been playing longer are less likely to leave in the event of additional

absolute delay

• Relative delay has little effect on a player’s decision to leave a server

It would appear that players are delay-sensitive in that they will not stay on a game server

where they have a high absolute level of delay, or where their delay is higher than that of the

other players on the server. Once the game is in progress, however, they become less delay-

sensitive, and do not respond to increased delay. Perhaps as a result of the fact that players do

not appear to leave a server as a result of network delay, we found that there was little correlation

between a player’s delay and the duration of their session.

Some of the effects that we have described and analysed in this chapter are not clearly

significant. For instance, we found a difference in the relative delay between tourist and regular

players that was significant, but this difference was very small. These unclear results may be

a result of using publicly-available servers, where there are many additional factors that are

5.7. Summary 95

outside our control. These uncontrollable factors may obscure results or affect experiments. In

the next chapter, we conduct experiments under controlled conditions to further analyse game

players’ perceptions of absolute and relative delay.

Chapter 6

The effects of delay on FPS game players

Chapter 4 demonstrated that players consider the presence of other players when connecting to

an FPS game server. In Chapter 5, we showed that users consider delay when connecting to a

game server. They do not, however, seem to consider their relative delay, and we found little or

no relationship between relative delay and the length of time that a player remains on a server,

or the conditions that lead a player to leave a server. This is surprising, as we expected that

users would consider the delay of the other players on a server.

The results in Chapter 5 came from publicly-accessible game servers. As with all mea-

surements taken from the Internet, there are many uncontrollable variables that might affect an

analysis. For instance, the hardware of the users that connect to these servers might differ, and

this could have an effect on their perception of network latency. In this chapter, we explore

users’ preferences for absolute and relative delay in a controlled environment.

Two methodologies are used. A questionnaire was used to explore users’ perceptions and

preferences about delay. Secondly, a set of usability experiments was performed in a controlled

environment. The aim of these experiments was to answer the following questions:

• Q1 What level of delay do users notice?

• Q2 Do users prefer similar or different delays to each other?

• Q3 Do users perform differently under different levels of delay?

One reason for users preferring relatively similar delays is that this presents a “level play-

ing field”. If all the users have the same handicap resulting from network delay, then no user

would have any advantage and so perhaps the network delay would be less relevant. If this is the

case, then we would expect that game players’ performance under different levels of network

delay would be the same, if all the players had the same level of delay.

6.1. A survey of game players’ perceptions of network conditions 97

6.1 A survey of game players’ perceptions of network conditions

6.1.1 Methodology

A questionnaire comprising 23 questions was designed. The questions spanned two areas of

game design — the effect of delay on game players, and the effects of network disruption in

a virtual world. Where appropriate, the questions involved answers on a Likert scale [123]

of seven, and in addition respondents were invited to make any additional comments. The

questions used in the questionnaire are listed in Appendix C.1.

The questionnaire was placed on a World Wide Web server, and advertised via game

servers and various games-related mailing lists. 22 respondents were interviewed in person,

and there were 236 unique responses via the website. Multiple responses from the same IP

address within a six-hour period were assumed to be errors and were ignored.

6.1.2 Results

Three questions were used to determine respondents’ experience and skill with networked

games. These are depicted in Figures 6.1, 6.2 and 6.3.

For how long have you played online games?

Response

F
re

qu
en

cy

0 1 2 3 4 5

0
50

10
0

15
0

20
0

<1mth 1−3mths 3−6mths 6−12mths

>1yr

Figure 6.1: How long have respondents played networked games

As respondents were self-selecting (i.e., they chose to access the questionnaire of their

own volition), this is not a random sample of the population. For instance, we would expect

that most of our respondents play networked games, whereas Nie and Erbring’s study of a

more general population sample indicates that 35.5% of the population play games [146]. In

comparison, only 5.81% of the respondents to our survey had played games for less than one

6.1. A survey of game players’ perceptions of network conditions 98

month, and 75.58% had played games for over one year (Figure 6.1). Thus we can expect this

sample population to be representative of “expert” game players. This is appropriate since it is

this class of player who is more likely to be concerned about network conditions and QoS. We

classify the users who have played for over one year as “experienced” users, and use this as an

independent factor for analysis of the answers to the other questions in the survey. Respondents

were also asked to rate themselves as game players (Figure 6.3). The majority of respondents

thought that they were better than average (median response = 5).

On average, how many hours a week do you
play online games?

Response

F
re

qu
en

cy

0 1 2 3 4 5

0
10

20
30

40
50

60
70

<1hr

1−5hrs

5−10hrs

10−20hrs >20hrs

Figure 6.2: How often do respondents play networked games

Figure 6.2 shows that the amount of time that respondents play networked games is dis-

tributed across the spectrum (from a 5 point Likert scale, the interquartile range is 2). The

median response was 3, or “5 – 10hrs per week”. This is much higher than the amount ob-

served in surveys of a more general user population. For instance, Swickert et al.’s study [184]

found that users played games for an average of 60.52 minutes per week. This again indicates

that the population of respondents is more interested in games, in contrast to surveys such as

that of Hills and Argyle [?], where games are found to be the least popular networked applica-

tion, and Aronsson et al. [12], where games are of below average interest for both commercial

and residential Internet users.

Offering variable levels of QoS is difficult to implement if users do not suffer different

costs for choosing between the levels of QoS. Respondents were asked two questions relating

to their expenditure on playing games, which are presented in Figures 6.4 and 6.5.

6.1. A survey of game players’ perceptions of network conditions 99

Overall, how proficient are you as a player?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
20

40
60

80

Newbie

Death
incarnate

Figure 6.3: How well do the respondents think they play networked games

How much do games influence your purchases of new computer
hardware?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40
50

60

Not at all

Dictates what
to buy

Figure 6.4: Do games affect respondents’ expenditure?

Respondents were asked how much games influence their expenditure on computer equip-

ment (Figure 6.4). Games were an important influence for the majority of respondents (82.17%

of answers were between 4 and 7, with a median response of 5). To look at unexperienced versus

experienced players, we use a Mann-Whitney test [175], as the t-test is inappropriate since the

Likert scale used in our questionnaire does not have an equal interval scale. The Mann-Whitney

6.1. A survey of game players’ perceptions of network conditions 100

Would you be willing to pay (even a small amount) for a service
that reduced network problems in games?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40
50

60

Absolutely not

Very much

Figure 6.5: Are respondents willing to pay for QoS?

test indicates a statistically significant difference in the answers from experienced players, for

whom games are a more important influence on their expenditure (U = 7231.5, p < 0.01). This

indicates that the sample population is already spending money according to their playing of

games, and therefore they might perhaps be interested in QoS, and the possibility of attaining

better QoS through additional expenditure. When users were explicitly asked whether they

would be willing to pay for better QoS, however, the responses were mixed (Figure 6.5, median

response = 4, interquartile range = 4). There was an insignificant level of correlation between

spending money on gaming through hardware purchases, and willingness to pay for QoS (corre-

lation coefficient = 0.083069). Some of the comments from respondents indicate that additional

payments for QoS might not be popular:

• “Couldn’t someone else pay i.e. like the game developers, or maybe pay through adver-

tising”

• “I’d like the ISP’s [sic] to reimburse us for network problems”

• “Am willing to pay for a better connection, am using adsl but i refuse to pay extra online

fees”

• “pay enough for my connection already”

To determine respondents’ attitudes towards network delay, they were asked the five ques-

tions presented in Figures 6.6-6.11.

6.1. A survey of game players’ perceptions of network conditions 101

How significant are ping times in choosing a
game server?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
20

40
60

80
10

0
12

0

Irrelevant

Very relevant

Figure 6.6: Do users consider delay when connecting to a server?

To determine respondents’ preferences for absolute delay, users were asked whether they

considered delay when connecting to a server (Figure 6.6). Delay was considered a very im-

portant factor by 46.51% (120) of the respondents, and the median response was 6. Delay was

significantly more important for experienced players (U = 6844.5, p < 0.01).

How annoying are game disturbances that result from network
problems?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
20

40
60

80
10

0
12

0
14

0

Irrelevant

Very annoying

Figure 6.7: Do network problems annoy players?

6.1. A survey of game players’ perceptions of network conditions 102

How often do you leave a game mainly because of network
problems?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40
50

60
70

Never

Often

Figure 6.8: Do network problems lead players to leave a game?

Users overwhelmingly found network problems an irritant in playing games (Figure 6.7,

median response = 7). When users were asked whether they left a server due to network prob-

lems (Figure 6.8), however, network problems seemed to be less important when leaving than

when connecting to a server (median response = 5), and there was no significant difference

between responses from experienced and inexperienced players (U = 5921.5, p = 0.3533).

How annoying is it when you have a much
higher ping time than other players?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
20

40
60

80
10

0

Irrelevant

Very annoying

Figure 6.9: Do respondents like relative delay?

6.2. Game players’ perceptions of network delay 103

Do you prefer servers where everyone has
similar ping times to you?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40
50

60
70

Not at all

Very much so

Figure 6.10: Do respondents prefer relative delay?

To determine respondents’ preferences for relative delay, they were asked whether they

found it annoying to have higher delay than the other players on a server (Figure 6.9), and

whether they preferred to have the same delay as all of the other players (Figure 6.10). Players

find it very annoying to have higher delays than other players (Figure 6.9, median response = 6),

and this is true for both experienced and inexperienced players (U = 6029, p = 0.2373). Most

players prefer servers where everyone has similar delays (Figure 6.10, median response = 5.5),

and experienced players had slightly higher preferences for this (U = 6875, p < 0.01).

As described in Section 5.2.2, Half-Life and other FPS games typically offer players the

ability to check their “ping”, or application-level delay, via a scoreboard which shows the delays

for all of the players. If game players are concerned about their delay, then we would expect

them to check this value often. If users never check their delay, then it might be more difficult

for them to gauge their relative delay compared with the other players, and might also indicate

that they do not care about such relative delays. Respondents were asked how often they check

their “ping” during the course of a games session (Figure 6.11). The results were mixed, with a

median response of 4, and an interquartile range of 3. Experienced players tend to check their

delay by a significantly higher amount (U = 6808.5, p < 0.01).

6.2 Game players’ perceptions of network delay

The questionnaire indicates that game players are aware of, and are concerned about, network

delay. A questionnaire, however, only indicates what players claim, and this might differ from

6.2. Game players’ perceptions of network delay 104

How often do you check your ping time (status) during a game?

Response

F
re

qu
en

cy

0 1 2 3 4 5 6 7

0
10

20
30

40

Never

Often

Figure 6.11: Do users check their delay during games?

how they actually behave in practice. In order to further examine users’ perceptions of their

absolute network delay, a set of experiments were carried out to to determine what level of

delay could be noticed by game players.

6.2.1 Methodology

A Half-Life server identical to those used in Chapter 5 was connected to a Half-Life client ma-

chine via a gateway machine (Figure 6.12). The gateway machine, a dual-processor 2x200MHz

Pentium Pro PC, running Linux 2.4.9, was used to introduce delay into the network in the same

manner as the experiments described in Section 5.4, using the iptables and libipq interfaces in

Linux. The client machine was a 733MHz Pentium III, running Windows 2000 and the Half-

Life client version 1.1.0.8.

Delay was introduced in the network in the direction from the client to the server. This

was deemed to be more appropriate since it meant that the game server program should have

reacted to the clients as if they were users on high-latency links.

The task that each experimental subject was asked to perform was to aim and shoot using

the “rpg rocket” weapon. This weapon represents a rocket-propelled grenade launcher with a

laser sight, and the position of the laser is calculated at the server (this laser sight is visible as

the red dot that is circled in Figure 6.13). Any network latency can thus be observed by the

user in the form of a delay between the user moving the weapon and the laser sight moving in

response.

6.2. Game players’ perceptions of network delay 105

GAME CLIENTS

GATEWAY
(INSERTING DELAY)

(733MHz PIII)

(2x200MHz PPro)

GAMES SERVER
(1.2GHz Athlon)

Figure 6.12: Experimental network setup

Figure 6.13: Monitoring the effect of network latency in Half-Life — the weapon’s laser sight

(the circled red dot) is calculated server-side

6.2. Game players’ perceptions of network delay 106

Participant Age Group No. of males No. of females Total

20-35 5 3 8

36-49 7 2 9

≥50 1 0 1

Table 6.1: Demographics of participants in single-player experiments

Usability tests of audio, video and other multimedia applications typically utilise the five-

grade Mean Opinion Score (MOS) methodology [97]. Several problems have been found, how-

ever, with MOS and multimedia applications, and in particular networked multimedia applica-

tions [191]. To overcome some of these problems, the triangular taste-test method [34] was

used to determine discriminability of delay. After an initial time period for participants to ac-

climatise to the game and environment, users were asked to complete the task, that is, to aim

and shoot, three times. In one of these three tasks, delay was introduced between the client

and server, and the task with additional delay was randomly selected. This set of three tries

was repeated for a variety of levels of delay ranging between 50 and 750ms, and the order in

which these different levels of delay were introduced was also random. After each set of three

tries, users were asked which of the three they thought was the odd one out. In addition, they

were asked to indicate on a 10cm line [183] how sure they were of this answer (the sheet which

experimental subjects had to fill out is listed in Appendix C.2.1). This 10cm continuous line

was used in favour of the discrete MOS five-point scale. Each session was recorded using the

game’s built-in recording facilities. Eighteen subjects participated in total. There were five fe-

male subjects, and the subjects ranged in age from 20 to 51, with a median age of 37.5 years

(Table 6.1 offers a breakdown of the participants by age group). Six of the subjects claimed to

have extensive experience with FPS games, whilst the others were either complete beginners or

had played occasionally.

In Chapter 5 we observed that most regular players on the server had delays in the region

of 50-300ms, whilst the 95% percentile was 546ms. This implies that users should be able to

perceive delays in these regions. The experiments therefore introduced five different levels of

delay for users to attempt to detect: 50, 150, 250, 500 and 750ms.

6.2.2 Results

Table 6.2 shows the subjects’ answers to the question “which was the odd one out?” for each

level of delay. We expect that by pure chance, a subject would choose the correct answer (that is,

the session with additional introduced delay) 1
3

of the time. The σ units represents the number

6.2. Game players’ perceptions of network delay 107

Delay (ms) Percentage of correct selections σ units

Obtained Expected

50 44.44% 33.33% 1.0

150 66.67% 33.33% 3.0

250 77.78% 33.33% 4.0

500 88.89% 33.33% 5.0

750 83.33% 33.33% 4.5

Table 6.2: Triangular test results for perception of delay

Delay (ms) χ2 p-value

50 1.0 0.3173

150 9.0 0.0027

250 16.0 < 0.01

500 25.0 < 0.01

750 20.25 < 0.01

Table 6.3: χ2 values for triangular test of perception of delay

of observed correct selections in excess of the expected number of correct selections that would

occur by chance, and is calculated as [34]:

σunits = (n−Np)/
√

Npq (6.1)

where:

n = number of correct choices

N = total number of users

p = probability of a correct choice by chance

q = probability of an incorrect choice by chance

A σ value which is ≥ 3.09 is considered very highly significant (p < 0.001). We can

therefore conclude that users can notice a 250ms level of delay. At a lower level of significance

(p < 0.05), we can conclude that users notice a 150ms level of delay. This is also indicated by

the χ2 test values (Table 6.3).

Figure 6.14 shows that users were more confident about distinguishing the presence of

network delay when the delay was high. This is to be expected, since a higher level of network

delay should be more intrusive in the game and thus more noticeable. A repeated-measures

6.2. Game players’ perceptions of network delay 108

50 150 250 500 750

0
20

40
60

80

Player confidence in distinguishing delay

Delay (ms)

S
ub

je
ct

’s
 c

on
fid

en
ce

Figure 6.14: Users’ confidence in distinguishing delay

Factor ANOVA test results

Age F(13,2) = 0.3774, p = 0.8916

Experience F(1,2) = 0.9389, p = 0.4348

Sex F(1,2) = 0.2100, p = 0.6917

Age:delay F(4,52) = 0.9623, p = 0.58052

Experience:delay F(4,8) = 0.2889, p = 0.87723

Sex:delay F(4,8) = 0.3781, p = 0.58153

Table 6.4: ANOVA test results for perception of delay versus sex, age and experience.

ANOVA test between the level of delay and a user’s confidence was statistically significant,

F(4,68) = 9.6866, p < 0.001. Users’ confidence that they were distinguishing network delay

rises markedly at the 250ms level. The median confidence level at 150ms was 40, whereas at

250ms it was 77.

Repeated-measures ANOVA tests indicated no significant effect for age, sex or experience

on a subject’s ability to distinguish different levels of network delay. There was also no sig-

nificant variation within any of these factors (Table 6.4). This result is surprising as one might

expect that experienced players might be more capable of detecting network delay, since they

would have been exposed to its effects in a gaming scenario more frequently.

6.3. Game players’ perceptions of relative network delay 109

6.3 Game players’ perceptions of relative network delay

6.3.1 Methodology

In order to examine users’ perceptions of their relative network delay, a multiplayer experi-

ment was carried out involving groups of players. The relative delays that different members

in the group experience were adjusted, and users’ objective and subjective preferences were

recorded. The Half-Life server used in Section 6.2 was connected to six identical client ma-

chines, comprising 733MHz Pentium III PCs running Windows 2000 and the Half-Life client

version 1.1.0.8, connected via a 100BaseT switch.

These experiments were designed to provide controlled conditions, and so some changes

were made from the game server set-up that was used for the servers placed on the public

Internet. In particular, the game clients and server were configured so as to maintain similar

conditions for all the players. We had observed from separate experiments [139] and discussions

with game players that network conditions tend to be noticed when there is a great deal of

interaction between the players. When a player is exploring the virtual world by themselves,

there is less likelihood of an inconsistent state, and so server-side mechanisms such as dead

reckoning can be effective and make any network delay less noticeable for the user. Therefore,

for the purpose of these experiments, a small Half-Life map, “G0b-forsaken”, was used, since

some of the larger maps which are designed for more than 16 to 24 players, tend to have a

correspondingly larger geographical area. Such a large map might mean that the smaller number

of players used in these experiments might never interact with each other.

To maintain similar conditions for all the players, the server was configured in “Internet

mode” (setting sv lan 0), and client-side prediction and server-side delay compensation were

disabled (setting cl pred fraction 0 and sv unlag 0 respectively). The map was modified so that

only one weapon, the “9mm assault rifle”, was available for users, and each client was limited

to the character avatar “Grunt”. The in-game scoreboard was disabled by changing the standard

key binding for displaying the scoreboard from the Tab key to the Break key (there seemed to

be no other easy method of doing this without access to the game’s source code, and in any case

this method had the desired effect since the Break key does not appear to function during the

game).

In order to isolate the effects of network delay, the experiments were designed to attempt

to minimise disruptions caused by non-networked effects. Bichard [24] lists five non-networked

ways in which players may become disrupted in an FPS game:

6.3. Game players’ perceptions of relative network delay 110

1. the often erratic behaviour of other players — the continual shifting of strate-

gies and alliances and the relative experience of other players

2. personal strategies and weapon choices

3. session time-outs — usually 30 minutes before a map change

4. player migration — as teams and individuals shift from game to game

5. new maps — although there are a core of maps that are continually replayed

We attempted to minimise these problems as follows. Users were sorted into groups of five

players according to their level of experience: no experience, some experience and experienced

(that is, those who had considerable experience playing FPS games). The game map was mod-

ified so that only one weapon was available for players to use, and each client was configured

to use the same character avatar in the game. Client-side prediction was disabled, as were

the server-side lag compensation mechanisms [23]. Although the experiments took place on a

LAN, the server was configured in “Internet mode”. The in-game scoreboard was disabled —

the scoreboard displays each user’s application-level delay, and so this could affect the results

since users would know what levels of delay were being added in each experimental session.

Users were also situated such that they were unable to communicate with each other physically,

or view the screens of other players, in case this had an effect on the results. Each session was

recorded using the game’s in-built recording facilities, and additional external video recordings

were taken of the players using a video camera and microphone which was placed behind each

player.

Scenario S-I All players with no additional delay

Scenario S-II All players with 100 ms delay

Scenario S-III All players with 250 ms delay

Scenario S-IV 4 players with 250 ms delay, 1 player with no additional delay

Scenario S-V 1 player with 250 ms delay, 4 players with no additional delay

Table 6.5: Experimental scenarios in multiplayer experiments

Five users participated at a time, for five sets of five minute sessions. Each session varied

in the level of delay according to the scenarios listed in Table 6.5. There were three experimen-

tal sessions where all the participants received the same level of delay (Scenario S-I – S-III).

Scenario S-I had no additional delay and acted as a control. Scenarios S-II and S-III involved

inserting the same level of delay for all the players, and were designed to examine users’ pref-

erences and performance under similar delays. Scenarios S-IV and S-V involved inserting a

6.3. Game players’ perceptions of relative network delay 111

Participant Age Group No. of males No. of females Total

≤18 5 0 5

19-35 14 4 18

36-49 9 1 10

≥50 2 0 2

Table 6.6: Demographics of participants in multi-player experiments

different level of delay for one of the five participants, and were designed to examine prefer-

ences and performance under different relative delays.

As the experiments took place on a 100Mbps switched LAN, there was minimal network

latency apart from that which was deliberately introduced. Figure 6.15 shows the application-

level delay that was recorded by the game, compared with the level of additional delay that was

introduced by the gateway machine. On average, the overhead incurred by the application stack

and Ethernet propagation created application-level delays which were 15.95759ms higher than

the introduced amount of delay.

0 100 250

0
50

10
0

15
0

20
0

25
0

30
0

Additional delay (ms)

A
ct

ua
l d

el
ay

 (
m

s)

Figure 6.15: Application-level delay in multiplayer experiments

There were 35 participants, 30 male and 4 female, ranging in age from 9 to 55, with a

median age of 32 years (Table 6.6 offers a breakdown of the participants by age group).

Users were given no particular task to perform. They were simply asked to “play the game”

— this typically entails exploring the virtual world, shooting at the other players and picking

6.3. Game players’ perceptions of relative network delay 112

up weapons and ammunition. They were given five to ten minutes as a preparatory warm-up

session, to allow them to get used to the environment and task.

6.3.2 Players’ performance under delay

If delay is noticeable by a user then it might be reasonable to expect that a certain level of delay

might also have an effect on a user’s performance in the game. To measure performance we

calculated the total number of times that a player killed another player (kills), and the number

of times a player was killed by another player (deaths). We also examined the ratio of these

two measures (kills/deaths) during each five minute session, since this might also reflect how

well a player was performing if they adopted, for instance, a “kamikaze” strategy whereby they

shot at everything in sight without caring whether they themselves were attacked.

0 50 100 150 200 250

0
2

4
6

8

Number of kills versus delay

Delay (ms)

N
um

be
r

of
 k

ill
s

Figure 6.16: Kills versus delay

There is little change in player’s performance under different levels of delay (Figures 6.16

– 6.18). A repeated-measures ANOVA test confirms that the number of kills a player makes

is not related to delay, F(2,68) = 0.6441, p = 0.5283. The number of times a player is killed

is also insignificant, F(2,68) = 2.0379, p = 0.1382, as is the ratio of kills/deaths, F(2,68) =

0.4096, p = 0.6655. The role of gender in video games has been examined, e.g. [115, 73],

and games are often found to be male-dominated: “The aggressive nature of many games may,

some fear, reinforce boys and leave girls behind in the field of computers, a field to which

most children are first exposed by video games” [174]. FPS games in particular are singled

out as being preferred by boys: “For most girls, the action in Quake is abhorrent and the plot

6.3. Game players’ perceptions of relative network delay 113

0 50 100 150 200 250

0
2

4
6

8

Number of times killed versus delay

Delay (ms)

N
um

be
r

of
 ti

m
es

 k
ill

ed

Figure 6.17: Deaths versus delay

nothing more than an exercise in aggression” [174]. It is therefore unsurprising that comparing

a player’s performance to their sex finds that male players killed significantly more players (a

mean of 6.54) than female players (a mean of 2.88), t(59) = 7.1183, p < 0.0001. Male players

were also killed fewer times (mean = 5.88) than female players (mean = 7.24), t(37) = 2.61, p =

0.0129. The small number of female subjects, however, means that these results are outside a

95% confidence interval.

Examining just the male players again found no relationship between the level of delay and

performance. The number of kills was insignificantly related to the level of delay, F(2,58) =

1.3347, p = 0.2712, as was the number of deaths, F(2,58) = 1.5271, p = 0.2258.

To determine the effects of relative delay on performance, we examine the sessions with

250ms delay, Scenarios S-III – S-V. A dummy variable, di f f delay, was used to indicate

whether a player had a different relative delay to the rest of the players. A di f f delay value of

1 indicates that the player’s delay was the same as all of the other players, whereas 0 indicates

that the player’s delay is lower, and a value of 2 indicates that the player’s delay is higher than

the other players. A repeated-measures ANOVA test indicates that kill is significantly related

to di f f delay at a 5% confidence level, F(1,34) = 4.6364, p = 0.03848. The number of deaths

is also significant at the same confidence level, F(1,34) = 4.4444, p = 0.04246. kills/deaths

is not significantly related, F(1,34) = 0.937, p = 0.3399.

6.3. Game players’ perceptions of relative network delay 114

0 50 100 150 200 250

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Ratio of kills / deaths versus delay

Delay (ms)

R
at

io
 o

f k
ill

s
to

 d
ea

th
s

Figure 6.18: Kills over deaths versus delay

These results indicate that delay has little effect on a player’s performance. In the uncon-

trolled wide-area experiments in Section 5.6.2, however, we found that the addition of delay

did affect the performance of the players connected to the server. This difference may be due

to the other variables that affected the Internet-based game servers. For instance, the additional

delay might lead a “real” game player to disconnect from the server, whereas in our controlled

experiments, this was not an option that was available. The players on the Internet-based game

servers might also have been more varied in terms of their skill to play the game, and therefore

their ability to cope with changes in network delay.

Players were asked in which session they performed the best. Each of the five sessions

was ordered by each performance metric, kills, deaths and kills/deaths, to produce a rank

in the range {1− 5}. The distribution of the rank of the session in which users thought they

performed best is depicted in Figure 6.19. It can be seen that this distribution is skewed towards

the sessions with a rank of 1; most users accurately chose the session in which they performed

best.

6.3.3 Players’ enjoyment from a game

Users were asked how much they enjoyed each session. This was compared with how well a

player performed in the session, to observe any correlation between performance and enjoy-

ment. A within-subjects repeated-measures ANOVA test indicates that a player’s number of

6.3. Game players’ perceptions of relative network delay 115

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

In which session did you play the best?

Performance metric rank

D
en

si
ty

Kills
Deaths
Kills/Deaths

Figure 6.19: In which session did players think they performed the best?

kills is a significant factor in their enjoyment of a game, (F(1,32) = 15.2125, p < 0.001). The

number of deaths, however, is insignificant, (F(1,32) = 2.7515, p = 0.1069).

As with performance, players were asked which session they enjoyed the most. The distri-

bution of these answers, compared with how players performed, is shown in Figure 6.20. It can

be seen that most players enjoyed the sessions in which they performed better. There was a high

correlation between the answers to the two questions “Which session did you enjoy the best?”

and “In which session did you think you played the best?” (0.4911782), which also indicates

that a player enjoys a game more if they are playing well.

The level of network delay is also found to have a significant effect on a player’s enjoy-

ment, (F(2,68) = 4.3411, p = 0.01681). Even if all the players have the same high level of

delay and thus a level playing field, the adverse effects to gameplay caused by the high delay,

e.g., slow responsiveness, may create a less enjoyable experience for the player.

Relative delay seems to have little effect on a player’s enjoyment. di f f delay was unrelated

to enjoyment, F(2,68) = 0.458, p = 0.6345.

6.3.4 Detecting delay

Subjects were asked four questions to see whether they could detect any difference between

their latency and that of other players (Table 6.7). In addition, they were also asked whether

they felt disadvantaged in a particular session, to determine whether players noticed, and were

affected by, the lack of a level playing field.

6.3. Game players’ perceptions of relative network delay 116

1 2 3 4 5

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

Which session did you enjoy the best?

Performance metric rank

D
en

si
ty

Kills
Deaths
Kills/Deaths

Figure 6.20: Which session did players think they enjoy the best?

DQ-1 Were you aware that other players were faster than you?

DQ-2 Were you aware that other players were slower than you?

DQ-3 Were you aware that you were faster than other players?

DQ-4 Were you aware that you were slower than other players?

DQ-5 Did you feel disadvantaged in that session?

Table 6.7: Questions about players’ relative delay

Section 6.2 showed that game players could detect a 250ms level of delay. We would

therefore expect that a player with a delay which is 250ms higher than that of the other play-

ers (i.e., experimental scenarios S-IV and S-V), would be detectable by the players. The same

dummy variable di f f delay was used as in Section 6.3.2. A within-subjects repeated-measures

ANOVA test was conducted to see whether a subject’s answers to the questions DQ-1 - DQ-4

varied with delay. di f f delay was found to have no statistical significance in a subject’s an-

swer to DQ-1 (F(2,68) = 0.5994, p = 0.552), DQ-2 (F(2,68) = 1.8663, p = 0.1625) and DQ-

4 (F(2,68) = 0.5261, p = 0.5933). di f f delay was found to be statistically significant in a

subject’s answer to DQ-3 at a 5% confidence level (F(2,68) = 3.6006, p = 0.03263). The

relationship between di f f delay and a player feeling disadvantaged (DQ-5) was found to be

statistically insignificant (F(2,68) = 0.2823, p = 0.755). We therefore cannot reject the hy-

pothesis that users can detect delay when they have a lower delay than the other players on a

6.4. Summary 117

server, although they seem to be unable to detect delay when they have higher delays than the

other players. They also seem to be unable to detect how other players’ delays relate to their

own.

Users may find it harder to distinguish the delay levels of other players, especially if the

other players have different levels of delay (as is the case in sessions S-IV and S-V). This

could explain the insignificant effects of di f f delay on a player’s answers to questions DQ-1

and DQ-2. They might find it easier to distinguish changes in their own delay, since they can

more clearly observe differences in how the game reacts between sessions.

If game players can only correctly detect differences in delay when they have a lower

delay than other players, then we would expect that relative delay would only have an effect

on a player’s enjoyment when this is the case. A repeated-measures ANOVA test of a player’s

enjoyment versus di f f delay shows no significant relationship, F(2,68) = 0.458, p = 0.6345.

Analysing only the sessions where players had a lower or the same delay as the other players

showed no significant change in this relationship, (F,1,34) = 0.6207, p = 0.4362. We therefore

are unable to conclude that a player’s relative delay has any effect on their enjoyment of a game.

6.4 Summary

In this chapter we have examined how users believe that they respond to the presence of network

delay, and compared this to how they actually react in laboratory conditions.

The results of the questionnaire indicate that game players, and in particular those players

who have played games for a longer period of time, believe that delay is an important problem.

Experienced players are concerned about both absolute and relative delay levels, and as a result

they often check their delay level during a game.

The laboratory experiments, however, indicate that relative delay is not as important as the

questionnaire had indicated. Players were able to detect an absolute level of 250ms in single-

player tasks. Although they could detect this, raising their delay to this level did not decrease

their performance in the game. It did decrease their enjoyment, and perhaps the noticeable

disruption to the game caused by network delay is not enough to compensate for a level playing

field.

Whilst absolute levels of delay were noticeable, in multiplayer tasks, players were unable

to detect differences in their relative delay compared with the other players in the session, save

when their delay was lower than that of the other players.

It is perhaps unsurprising that users can only detect when their delay is lower than that of

the other players, and were unable to detect differences in relative delay under other conditions.

6.4. Summary 118

A player can easily verify their own delay between sessions, for instance by repeating a known

task such as jumping or shooting, and comparing the response in different games. It might be

more difficult, however, for them to gauge the delays of other players, since without control

over these other players, they would be unable to observe these other players in situations that

would be comparable between sessions.

These results can help to explain some of the behaviour that was observed in Chapter 5.

We observed that the mean delay of all the players who connected to our game servers was

231.70ms, whilst the mean delay of those “regular” players who stayed for longer than ten

minutes was 144.02ms. If players can notice a 250ms delay, then perhaps most players are

choosing to ignore servers which have delays in excess of this figure. We also observed that

relative delay had very slight effects, and there was a small, although significant, difference

in relative delay between those players who stayed and those who left. Since most players

were unable to detect differences in relative delay, except when they had a lower delay than

the other players, the best way for players to gauge their relative delays is not through their

own perceptions, but to use the scoreboard. The questionnaire, however, indicates that not all

players check the scoreboard on a regular basis, and so perhaps this can help to explain the

mixed effects of relative delay.

To summarise, in this chapter we have shown the following:

• Game players believe that both absolute and relative delay is important

• Players appear unwilling to pay for greater QoS

• Players can notice a 250 ms level of delay in Half-Life

• Lower delay does not increase players’ performance

• Lower delay increases players’ enjoyment of the game

• Relative delay has some effect on performance

• Relative delay has no effect on player’s enjoyment

• Enjoyment of the game is related to how many kills a player carries out

• Players can only detect relative delay when they have a lower delay than other players

Chapter 7

Summary and conclusions

Networked latency is an important factor in the user’s experience in a networked first person

shooter game. This thesis has attempted to analyse whether a user’s tolerance for the adverse

effects of network delay is affected by the existence of the other players in the game. We

originally presented the thesis that “users prefer similar relative delay, rather than minimal

individual delay, in networked games, and will self-organise with respect to the other users in a

game to achieve this.” Although we have been unable to conclusively prove this thesis, we have

analysed the thesis by examining the following questions:

• Do players in a multiplayer game consider the presence of other players when choosing

where and when to play?

• Do players in a multiplayer game consider the network conditions of other players when

choosing where and when to play?

The initial supposition for this work was that users in a multiuser application would con-

sider the existence other users in that application, since some of their utility for using the appli-

cation must be derived from these other users. Thus, we speculated that users might consider

the network QoS that other users were receiving, and that the variation in a QoS parameter

between the members of a group application might be an additional QoS parameter for such

applications.

We have been able to conclude that users do indeed consider the delay of other players in

some aspects of an FPS game. We have shown that users consider other users when choosing

to join an FPS game server, and that users consider absolute delay when joining an FPS

game server. The effects of relative delay on a player’s decision to join or leave a game server

were found to be insignificant, or very small. This does not mean that our original thesis was

incorrect. We have been able to demonstrate that users’ behaviour towards delay changes

over the course of a game, and once a game in is progress, users can tolerate additional levels

7.1. Contributions 120

of delay and do not leave the game. We have also shown that user’s attitudes and perceptions of

delay, and the effects of delay on their use of FPS games, differs from their measured behaviour.

In this chapter we outline the contributions of this thesis. We discuss how this relates to

other research in this area, and suggest possible avenues for further work.

7.1 Contributions

In Chapter 4 we analysed users joining and leaving several FPS game servers on the Internet.

The main contribution of this work is that, to our knowledge, this is the first large-scale session-

level analysis of networked FPS games. The specific findings and contributions of this chapter

were the following:

• We demonstrated that network externalities exist in FPS games, and hence that players

consider the number of players in a game when choosing to join a server. This was shown

through the high levels of autocorrelation in the number of players on an FPS game server

in a time-series analysis. This is important since it means that we cannot treat a multiuser

application such as a networked game in the same way as a single-source application,

even though games might use unicast rather than IP multicast transport mechanisms.

• Players prefer to play at weekends and at particular times during the day. This was

observed through the seasonal time-of-day effects in the number of players on a server,

and is typically what one would expect for a recreational application such as a game.

• Player’s session durations were random, whilst player interarrival times were less so.

Analysis of duration and interarrivals found that players’ session duration was exponen-

tially distributed, and the distribution of player interarrival times were heavy-tailed.

In Chapters 5 and 6 we studied how players perceive delay in FPS games. We used detailed

measurements of game servers that we ran on the public Internet, as well as usability tests in

controlled conditions. Although many researchers have looked at delay-sensitive applications,

and the delay requirements for multimedia applications, this is one of the first studies of net-

worked FPS games in particular. The contributions of this work can be outlined as the following

findings:

• Players consider absolute delay when choosing to join a game server. It appears that

users’ perceptions of delay change throughout a game, and delay does not affect a player’s

decision to leave a game server. Analysing the delay at the end of a player’s session also

failed to indicate that a rise in delay would cause them to leave the server. We further

7.1. Contributions 121

tested this by adding delay to all the players on a server, and by adding delay to some

of the players. Additional delay had no significant effect on the proportion of players

who left the server, compared with those who left in the absence of additional delay.

Players who had been playing for longer, however, were less likely to leave as a result of

additional delay.

• Players believe that both absolute and relative delay are important factors in their gaming

experience. They do not, however, appear to be willing to pay for lower delay or better

network conditions.

• Players can only detect differences in relative delay when they have a lower delay than

the other players in the FPS game Half-Life. They are able to notice a 250ms level of

absolute delay, however.

• In controlled conditions, we found little relationship between network delay and a

player’s performance in, or enjoyment of, a game. Enjoyment does seem to relate to

how many kills are carried out by a player. In practice, introducing delay into a public

game server had an effect on player performance, which may be due to factors which

were outside our control.

7.1.1 Discussion

This thesis has considered the FPS game as an example of a multiuser networked multimedia

application. We speculated that an FPS game might differ from other multimedia applications

such as video conferencing. A game is an entertainment application, and specifically an FPS

game is an application for entertainment in a group scenario, where users compete against each

other. Competition and entertainment are absent from a video conferencing scenario. Perhaps

as a result of these differences, we have found that players consider the other users in a game,

and that they are willing to tolerate quite high levels of delay.

We have conducted a number of measurements of publicly-available game servers. Our

measurement methodology is passive — no additional traffic was inserted into the network,

and no measurement software was required to be installed by game players. The choice of a

passive methodology was motivated by the desire to make the measurements representative of

“real” game players, and their behaviour in unadulterated game sessions. Our sampling may be

less accurate than an active measurement methodology, but we believe that this is outweighed

by the changes to user behaviour that may arise from the additional traffic and effort required to

perform active measurements (both for the measurement site and the clients). Another benefit

7.1. Contributions 122

of our passive methodology is that we have been able to monitor a much larger set of game

servers and players than an active methodology would allow, since typically only a small subset

of the overall userbase is willing to install additional software on their workstation for research

purposes. In Chapter 5 we observed over 75,000 users connecting to our public game servers

— it is highly unlikely that we would have been able to convince this number of users to install

monitoring software. Moreover, since no additional software was required, users were unaware

that they were being monitored, and so the behaviour that we have observed is more likely to

be representative of normal user behaviour.

We have formulated a set of metrics to examine the variation in QoS between the partici-

pants of a multimedia session, and applied these to measurements of the players’ network delay

in an FPS game. Although we believe that the metrics are a valid indicator of the relative delays

between players in a game, they may require further refinement, and this may be one reason for

the size of the effects of relative delay that were observed.

We have found divergences between the results of the uncontrolled experiments (the mea-

surements in Chapter 5 and the questionnaire in Chapter 6) and the controlled experiments (the

usability experiments in Chapter 6). Users believe that relative delay is important, but in prac-

tice we found that absolute delay seemed to be more important in a player’s decision to join

a game server, and that in several cases users were unable to detect differences in relative de-

lay between themselves and the other players. There was also a disparity in the relationship

between performance and delay — in controlled experiments, we found that delay had little

effect, but when delay was added to our publicly-available game servers, performance was de-

graded. These differences between theory and practice indicate that there are many variables

that determine a player’s decision to join or leave a game server. For instance, a player might

leave a server because of the other players — they may have disagreements or arguments dur-

ing the game, or have done so in the past. Alternatively, a player may leave because of a factor

unrelated to the game or network — they may be hungry, or have an engagement which entails

them leaving their computer or terminating their session. In order to address or control all of

these variables, we need further information from the network and from the users.

These shortcomings in our methodology and metrics must be taken into account when con-

sidering the conclusions that we have presented. We lack perfect or complete information about

the user population, and so uncontrolled variables may account for some of the phenomena that

we have observed. Our controlled experiments, however, have managed to verify some of the

results from the uncontrolled experiments, and we can be reasonably confident that users are

able to detect levels of network delay, and that they consider this delay in a game.

7.2. Relationship to other work 123

7.2 Relationship to other work

Much of the previous work into multiuser applications has concentrated on IP multicast. The

distributions for session duration and player interarrivals that we described in Chapter 4 ap-

pear similar to those that have been observed for some single-source multicast sessions [6]. If

networked games are similar in some respects to multicast applications, this may be useful for

future work, since it might be possible to use network and session traces and inferences from

user behaviour in games to understand how to provide for multicast and multiuser applications.

The 250ms level of delay that we found to be noticeable in Half-Life is within the range

that has been seen in other applications and human factors research. This confirms that net-

worked FPS games are similar to other multimedia applications in terms of delay sensitivity.

Networked games may therefore be suitable for further research into delay-sensitive applica-

tions and QoS. When examining “real” players on Internet game servers, however, we found

that the mean delay experienced by players was in the 150-250ms range. The human factors

evidence indicates that games should be unplayable above 200-250ms, whilst anecdotal reports

indicate that games require delay bounds in the order of 100-150ms. We would therefore ex-

pect that 200-250ms would indicate the upper bound of the players’ delay distribution, rather

than the mean. It would appear that whilst players can notice a similar level of network delay

in games to that in other applications, this does not deter users from playing to the extent that

prior work would suggest.

We have been able to conclude that whilst users believe that their relative delay is impor-

tant, the significance of relative delay in a player’s decision to join a game is very slight. One

explanation for this is that players are unable to notice when they have a different relative delay

to other players, as we demonstrated in Chapter 6, except when they have a lower delay than

the other players. Players are thus only able to gauge their relative delay by checking the score-

board in the game, and our questionnaire shows that not all the players do so frequently during

gameplay (Figure 6.11).

Another explanation for the minimal effects of relative delay is that whilst players believe

that they are altruistic, in that they may leave a server where they have a much lower delay than

the other players and choose to join another server where the playing field is level, in practice

they may be selfish and only consider their own delay when choosing a game server. If a player

happens to have a lower delay than the other players on the server, this is to that player’s benefit,

and so the player does not choose to leave. Similarly, if a player has a much higher delay than

the other players, to the extent that the player’s presence makes the game sluggish or irritating

for the other players, the player with high delay acts selfishly and does not leave. Selfishness

7.3. Future work 124

is perhaps an unsurprising attribute to find in game players, given the competitive nature of the

application. In Chapter 2 we described how choosing a game server with a low absolute network

delay could be an instance of rational economic behaviour. There is also reason to believe from

biology that an organism’s degree of selfishness may be determined by their genetic similarities

to other organisms [55]. People might therefore only act in an altruistic manner towards those

to which they are related, or, “if each partner can get more out than he puts in” [55]. Hence, if

there is no advantage to a player to leave a server where they have a different relative delay to

the other players, they might not choose to do so.

7.3 Future work

This investigation into game players’ perceptions of delay has resulted in many new questions

and avenues for further work.

7.3.1 QoS, pricing and congestion control

We have chosen to analyse delay in FPS games because networked games are a real-time ap-

plication of the type that QoS-enabled networks are designed to support. Any discussion of

network QoS must involve pricing, since without price discrimination1 , network QoS cannot be

provided, since any utility-maximising network user will always choose the highest available

level of QoS if this is cost-free. One potential use for our work, and for future work derived

from this thesis, is to help derive efficient pricing schemes and QoS policies for multiuser delay-

sensitive applications.

If pricing is to be introduced for games, the charges should be acceptable to users. The

questionnaire in Chapter 6 indicated that whilst players did not care much for paying extra

for QoS, they were already indirectly paying to support their interest in computer gaming via

purchases of new computer hardware. How to make the benefits of paying for better QoS an

agreeable proposition for users is an open research question, for games and other multimedia

applications. The success of subscription-based games such as Everquest indicates that one

method is to charge for the content (access to servers in Everquest’s case), rather than for the

network QoS itself.

In Chapter 4 we observed high variation in user duration and interarrival times, indicated

by the exponential and heavy-tailed distributions. This has several implications for price stabil-

ity and provisioning if the members of a game are to share the overall cost of a gaming session

1Price discrimination is a term from economics, defined as the situation where “two varieties of a commodity

are sold (by the same seller) to two buyers at different net prices, the net price being the price (paid by the buyer)

corrected for the cost associated with the product differentiation.” [155]

7.3. Future work 125

amongst themselves. The autocorrelation in the number of players and interarrival times means

that if the users are sharing the costs of a session, this cost will snowball; new users joining will

be followed by other users joining (and users will join faster as the number of users increases),

leading to rapid decreases in the cost per user, and vice versa for when users leave. This could

be rectified, for example, by only changing the price for each user on a periodic basis rather

than with each join or leave (we present a possible scheme in [85]). The autocorrelation seems

to exist for large lags, however, which means that the periods of price reevaluation would also

have to be large, and this could impede the efficiency of any pricing scheme.

Time-of-day pricing is commonly used for pricing utilities such as electricity and tele-

phone service, and has been proposed as a simple, if suboptimal, method for pricing Internet

traffic [126]. The time-of-day effects that we observed in Chapter 4 suggest that this might be

appropriate on a per-application basis, at least for games. This might also have implications

for network provisioning, whereby a network designed for games would have to be able to deal

with the peak times.

We have discussed how games are useful for research into multicast applications because

of their similarity at the session level. Current multicast charging proposals have tended to look

at single-source applications, e.g. splitting the costs of a single-source application amongst

the downstream members [87, 61], or by treating the multicast price as a proportion of the

cost of the corresponding unicast (single-source) application [44, 162]. Most networked games

tend to be multiple-source, since they typically involve more than one player. Data about user

behaviour and preferences in networked games could perhaps be used to aid the derivation of

pricing methods for multiple-source multiuser applications.

The presence of network externalities also has implications for congestion control. Legout

et al. [116] suggest that the proportionally-fair bandwidth share for a multiuser application

should relate either linearly or logarithmically to the number of downstream receivers. If net-

work externalities do exist in multiuser applications, then a logarithmic relationship, using indi-

vidual utility functions that incorporate network externalities, might be more appropriate. One

way to encourage the use of bandwidth-saving techniques such as multicast for multiuser ap-

plications might be to offer a logarithmically-increasing bandwidth share to these applications,

since users will be attracted to the application both by the network externalities, which encour-

age group usage, and the higher quality made available by the increased bandwidth share.

We have only examined one parameter of network QoS, namely, delay. In Section 2.2.1

we listed some of the other QoS parameters such as throughput and delay jitter. A future

area of research could thus be how game players perceive and react to different absolute and

7.3. Future work 126

relative levels of these other QoS parameters. Although we have argued that delay is the most

important QoS parameter for games, this does not mean that the other QoS parameters are

irrelevant. Jitter has been found to be a problem for delay-sensitive NVEs [152], and whilst we

have noted that throughput is not a problem for existing networked games, this may change in

the future as higher bandwidth connections become more prevalent amongst residential game

players. Further work is therefore required in this area.

7.3.2 Other games and applications

This work has only looked at one type of game, the first person shooter. The FPS game was

chosen because it represents a popular networked game genre, and is amenable to large-scale

experiments. Not all games, however, might respond to high network latency in the same way,

and other games may have different delay requirements. Users of other games may thus perceive

and react to delay in dissimilar ways to those that we have discussed here. Driving games may

be even more delay-sensitive than FPS games [150], whilst it would appear that the RTS game

is more tolerant towards high delays [185].

We have only looked at one set of FPS game servers in detail, namely, a set of Half-Life

game servers that we installed at UCL. One reason for this was that we found it difficult to

gain permission to monitor and/or install game servers at other remote sites. It might be useful,

however, to conduct further experiments using a more widely-dispersed sample of servers. We

were unable to explain why players connected to our UK-based servers from as far away as

Taiwan, and monitoring servers around the world might help to determine the reasons for this.

Even within the same game genre, other FPS games might exhibit different characteristics

to Half-Life. We have speculated that game players act selfishly in choosing a game server,

and consider their absolute rather than relative delay. This might not be the case in team-based

games, where players might prefer to have the same delay as everyone on their team. Altruism

can sometimes take place if there are rewards to be gained over time [160], and this might

perhaps occur amongst the members of a team in an FPS game, for instance to earn a reputation

amongst the other members of the team. It might also be more appropriate in some team-based

games if everyone has a similar delay, for instance if they are attempting to complete a shared

task that requires synchronised input from each team member.

If, as the results of our questionnaire have shown, users in FPS games believe that they

prefer similar relative delays to the other players on a game server, then this might be an ap-

propriate QoS policy to offer to such game players. As well as being acceptable to players,

it would also be useful for game design. The adaptive pipeline cheat-proofing protocol [48]

7.3. Future work 127

requires players to measure their delay to each other — this would be unnecessary if all the

players knew that they had the same relative delays.

Games have been a popular application on NTT DoCoMo’s mobile telephone network [?],

and are viewed as an important source of revenue for the US and European 2.5G and 3G mobile

networks [?, ?], with manufacturers creating handsets that are designed specifically for games

rather than voice [?]. Current mobile games have tended to be single-player, and those multi-

player games that do exist, such as BotFighters [?], are non-realtime, using mechanisms such as

SMS (Short Messaging Service). As such, there have been few studies of the effects of network

delay in realtime multiplayer mobile games. It is unclear whether our results will apply to

mobile games — the different type of device or interface may mean that users have different

expectations, or perhaps the problems caused by delay may manifest itself in different ways.

On the other hand, some mobile games may entail users connecting a laptop or another familiar

device to a wireless network [?], in which case we may expect users to respond to delay in

similar ways to those that we have analysed in this thesis.

Apart from games, there are many other applications which require low levels of absolute

and relative delay. For instance, online auctions might require that each bidder has similar

delays to the auctioneer, so that one user could not use a lower delay to gain an advantage by

knowing the value of bids before the other bidders. Networked gambling and online casinos

are already a popular application on the Internet. These also require similar relative delays, for

instance for each player in an online poker game, otherwise a player could again exploit a lower

delay to observe another player’s hand before making a bet. A QoS policy which provided

similar delays to all the participants of a multiple-source application could therefore have a

wide range of uses.

The data that has been collected and presented in this thesis has other potential uses for

game design, besides the analysis of player delay. For instance, in Section 5.3 we noted that of

the game servers that were advertised by the master server, only a relatively small proportion

(≈ 30%) were actually found to be reachable. This indicates that either the master server needs

improvement, or perhaps that a better method for discovering game servers is required. We are

currently investigating such a system, using a distributed peer-to-peer mechanism to allow users

to discover the existence of game servers by querying players with whom they have recently

played games [83].

Appendix A

ARIMA modelling

ARIMA (Autoregressive Integrated Moving Average) models were first introduced by Box and

Jenkins [31], and have become a popular means of modelling time series data. An autoregres-

sive process is defined as a serially dependent process whereby elements in a time series can be

described in terms of previous elements:

Xt = φ1Xt−1 +φ2Xt−2 +φ3Xt−3 + . . .+ ε (A.1)

A moving average process is where each element in a time series is affected by past errors,

independent of the autoregressive process:

Xt = µ+ εt −θ1εt−1 −θ2εt−2 −θ3εt−3 − . . . (A.2)

An ARIMA model incorporates both the autoregressive and moving average processes.

Such models are referred to as ARIMA(p,d,q), where p is the autoregressive parameter, d the

number of differencing passes required to make the input series stationary, and q the moving

average parameter. If the time series has a seasonal component, additional seasonal parameters

are required, and the model is referred to as an ARIMA(p,d,q)× (P,D,Q)s model, where P, D

and Q repesent the ARIMA parameters of the seasonal component, and s is the period of the

seasonality.

A.1 Diagnostic checking

An overview of diagnostic checking for periodic models such as ARIMA can be found in [135].

To check that a model fits the data, the residuals from the data are calculated and compared to

white noise. The Ljung-Box “portmanteau” test [124] can be used to indicate the residuals’

departure from white noise.

Appendix B

The FPS game Half-Life

This thesis has examined the FPS game Half-Life, for the reasons outlined in Chapter 3. This

appendix outlines some of the details of the game and the protocols used to study Half-Life

game servers.

B.1 Half-Life network protocols

As Half-Life is a closed-source commercial application, exact details of the game’s network-

ing code are unknown. Some details have been discovered, however, through network-level

analysis, and can be found in [63, 139].

Both the client and server send generally constant bitrate streams. Client to server flows

are generated at a constant rate of 24 packets per second, and over 99% of the packets are under

100 bytes in size. Server to client flows are generated at a slightly-varying rate of 16-17 packets

per second, and vary in size, with a mean of 240 bytes.

All data communication uses UDP. Packets have sequence numbers for detecting loss and

duplicates, and in certain cases, packets may be retransmitted. No congestion control is utilised,

however, and retransmissions are at the same constant bitrate.

B.2 Half-Life query protocol details

Part of the data presented in this thesis is a result of querying several remote FPS game servers.

To carry out these queries, we initially used a freely-available tool, QStat [159]. QStat was not

ideal for long-term automated querying, and moreover was not as comprehensive a tool as we

required. Thus, we wrote our own tool in Perl to query Half-Life servers in particular.

B.2.1 Master server query mechanisms

The “master server” acts as a central directory of game servers for game players to query when

they wish to play a game.

B.2. Half-Life query protocol details 130

• When a game server starts running, it registers with one or more server directories. The

addresses of these directories are discovered by the server operator out-of-band and the

server program is configured appropriately.

• A potential game player sends a 6 byte UDP packet containing the character “e”, fol-

lowed by a sequence number indicating where in the list the server directory should start

returning addresses. For the initial query, this number should be 0.

• The server directory responds with a UDP packet of up to 1396 bytes long. This contains

a one byte sequence number, followed by a list of server addresses.

• If the sequence number returned by the server directory is non-zero, the client sends

another query packet to the server directory, this time including the returned sequence

number. The server directory then responds with another list of server addresses, until

the client has received the entire list.

B.2.2 Server query mechanisms

Query string Type Queried variable

“info” c Information about the server (the name and description

of the server and the name of the current map)

“details” m ”info”, plus further details about the game server (server

version, OS, the maximum number of players etc.)

“rules” E The rules of the game server (some rules are fixed by the

game developers, but others can be configured on a per-

server basis, e.g., whether it is password-protected, the

length of time that each map is played for, etc.)

“ping” j Doesn’t return any data — used to determine the

application-level delay to the server

“players” D Details about the players on the server (their name, num-

ber of kills and the length of time that they have been

playing)

Table B.1: Half-Life server query variables

The game server itself offers a variety of configuration variables and statistics that can

be queried from external hosts. These are all queried by sending the server a UDP packet

containing a string which represents the variable that is to be queried. After receiving a query

B.2. Half-Life query protocol details 131

packet, the server will return one or more UDP packets, containing one byte indicating the type

of packet, followed by the requested information. Some of the strings that can be sent as queries

are listed in Table B.1.

Appendix C

Questionnaires

C.1 Player survey

Please answer each question by placing a cross (X) in the appropriate box

1. For how long have you played online games?

<1mth 1-3mths 3-6mths 6-12mths >1yr

2. On average, how many hours a week do you play online games?

<1hr 1-5hrs 5-10hrs 10-20hrs >20hrs

3. How much do games influence your purchases of new computer hardware?

Not at all Dictates what to buy

4. Overall, how proficient are you as a player?

Newbie Death incarnate

5. When you are playing a game, to what extent are you aware of your surroundings (i.e.,

the world outside the computer)?

Not at all Very much

6. How much do you have a sense of being in the game world?

Not at all Very much

7. Do you have a sense of being in the same space with other players?

Not at all Very much

8. How often do you notice disruptions in the game (excluding external disruptions such

as telephone, people interrupting, etc)?

C.1. Player survey 133

Not at all All the time

9. What proportion of game disruptions do you think are due to network problems as

opposed to software problems?

Mostly software Mostly network

10. How annoying are game disturbances that result from network problems?

Irrelevant Very annoying

11. Do you become more aware of your physical surroundings when network problems

occur?

Not at all Very much

12. Do network problems disrupt your sense of being in the same space with other

players?

Not at all Very much so

13. How often do you leave a game mainly because of network problems?

Never Often

14. How significant are ping times in choosing a game server?

Irrelevant Very relevant

15. How annoying is it when you have a much higher ping time than other players?

Irrelevant Very annoying

16. How often do you check your ping time (status) during a game?

Never Often

17. Do you prefer servers where everyone has similar ping times to you?

Not at all Very much so

18. How often do you play games with people you already know?

Rarely All the time

19. How often do you meet new players in games and play with them in future sessions?

Rarely Frequently

C.2. Experimental questionnaires 134

20. Can you adjust your game play in the presence of network problems?

Not at all All the time

21. Does learning to anticipate network problems affect your game play?

Not at all Very much so

22. When network problems occur, how would you prefer to know about them?

Do not need to know

Dialog box

Flashing icon

Integrated into gameplay

Other:

23. Would you be willing to pay (even a small amount) for a service that reduced network

problems in games?

Absolutely not Very much

Any other comments?

C.2 Experimental questionnaires

C.2.1 Single-player experimental questionnaire

Name:

Sex: M / F Age:

Which task did you think was the odd one out?

1 2 3

How sure are you?

Not sure at all Very sure

C.2. Experimental questionnaires 135

Which task did you think was the odd one out?

1 2 3

How sure are you?

Not sure at all Very sure

Which task did you think was the odd one out?

1 2 3

How sure are you?

Not sure at all Very sure

Which task did you think was the odd one out?

1 2 3

How sure are you?

Not sure at all Very sure

Which task did you think was the odd one out?

1 2 3

How sure are you?

Not sure at all Very sure

C.2. Experimental questionnaires 136

C.2.2 Multiplayer experimental questionnaire

Name:

Sex: M / F Age:

Please answer each question by placing a mark on the appropriate line

SESSION :

Did you enjoy playing in that session?

Did not enjoy Enjoyed

Did you feel disadvantaged in that session?

Disadvantaged Advantaged

Were you aware that other players were faster than you?

Not aware Highly aware

Were you aware that other players were slower than you?

Not aware Highly aware

Were you aware that you were faster than other players?

Not aware Highly aware

Were you aware that you were slower than other players?

Not aware Highly aware

OVERALL:

Which session did you enjoy the best?

1 2 3 4 5

In which session did you think you played the best?

1 2 3 4 5

References

[1] 3Com. 3Com Scores With Modem Geared Towards Serious Gamers, Oct. 25, 1999. [cited 26

May 2002; 11:26 BST] Available from Internet: <http://www.3com.com/corpinfo/

en_US/pressbox/press_release.jsp?INFO_ID=7138>.

[2] R. Adobbati, A. N. Marshall, A. Scholer, S. Tejada, G. Kaminka, S. Schaffer, and C. Sollitto.

GameBots: A 3D Virtual World Test-Bed for Multi-Agent Research. In Proceedings of the

Second International Workshop on Infrastructure for Agents, MAS, and Scalable MAS, Montreal,

Canada, May 2001.

[3] D. Ahl. The Beginnings of Computer Games. Computer Museum Report, 22:3–5, Spring

1988. [cited 26 May 2002; 13:31 BST] Available from Internet: <http://ed-thelen.

org/comp-hist/TheCompMusRep/TCMR-V22.html>.

[4] The All-Seeing Eye. [cited 18 Oct. 2002; 13:06 BST] Available from Internet: <http://www.

udpsoft.com/eye/>.

[5] E. A. Alluisi. The Development of Technology for Collective Training: SIMNET, a Case History.

Human Factors, 33(3):343–62, June 1991.

[6] K. C. Almeroth and M. H. Ammar. Collecting and Modeling the Join/Leave Behavior of Multicast

Group Members in the MBone. In Proceedings of the 5th IEEE International Symposium on High

Performance Distributed Computing (HPDC-5), pages 209–216, Syracuse, NY, USA, Aug. 1996.

[7] C. A. Anderson and M. Morrow. Competitive Aggression Without Interaction: Effects of Com-

petitive Versus Cooperative Instructions on Aggressive Behavior in Video Games. Personality

and Social Psychology Bulletin, 21(10):1020–1030, Oct. 1995.

[8] J. Anderson. Who Really Invented the Video Game? Video & Arcade Games, 1(1), Spring 1983.

[9] J. Andreoni and J. K. Scholz. An Econometric Analysis of Charitable Giving with Interdependent

Preferences. Economic Inquiry, 36(3):410–428, July 1998.

[10] G. Armitage. Sensitivity of Quake3 Players To Network Latency, Nov. 2001. [cited 28 May 2002;

13:25 BST] Available from Internet: <http://opax.swin.edu.au/˜garmitage/q3/

imw2001/poster110101.pdf>.

[11] J. Aronson. Dead Reckoning: Latency Hiding for Networked Games. Gamasutra, Sept. 19, 1997.

[cited 28 May 2002; 16:11 BST] Available from Internet: <http://www.gamasutra.com/

features/19970919/aronson_01.htm>.

References 138

[12] M. Aronsson, D. Tholén, P.-E. Josephson, H. Li, and S. Kong. Broadband services for residential

and commercial tenants: a categorisation of current and future services and a survey on tenants

needs in Sweden. Building and Environment, 38(2):347–358, Feb. 2003.

[13] T. Aronsson, S. Blomquist, and H. Sacklén. Identifying Interdependent Behavior in an Empirical

Model of Labor Supply. Journal of Applied Econometrics, 14(6):607–626, Nov./Dec. 1999.

[14] Associated Press. Gamers drive souped-up PC market. CNN.com, Aug. 26, 2002. [cited 23

Sept. 2002; 14:09 BST] Available from Internet: <http://www.cnn.com/2002/TECH/

ptech/08/26/hot.rod.computing.ap/index.html>.

[15] R. W. Bailey. Human Performance Engineering — Using Human Factors/Ergonomics to Achieve

Computer System Usability. Prentice Hall, Englewood Cliffs, NJ, USA, second edition, 1989.

[16] R. A. Bangun and E. Dutkiewicz. Modelling multi-player games traffic. In Proceedings of

the International Conference on Information Technology: Coding and Computing (ITCC), pages

228–233, Las Vegas, NV, USA, Mar. 2000.

[17] R. A. Bangun, E. Dutkiewicz, and G. J. Anido. An Analysis of Multi-Player Network Games

Traffic. In Proceedings of the 1999 International Workshop on Multimedia Signal Processing,

pages 3–8, Copenhagen, Denmark, Sept. 1999.

[18] R. Bartle. Mud, Mud, Glorious Mud. Micro Adventurer, 1(11):22–25, Sept. 1984. [cited 26

May 2002; 13:32 BST] Available from Internet: <http://www.mud.co.uk/richard/

masep84.htm>.

[19] D. Bauer, S. Rooney, and P. Scotton. Network Infrastructure for Massively Distributed Games. In

Proceedings of the First Workshop on Network and System Support for Games (NetGames2002),

pages 36–43, Braunschweig, Germany, Apr. 2002.

[20] N. Baughman and B. N. Levine. Cheat-Proof Playout for Centralized and Distributed Online

Games. In Proceedings of the 20th IEEE Conference on Computer Communications (INFO-

COM), volume 1, pages 104–113, Anchorage, AK, USA, Apr. 2001.

[21] E. J. Berglund and D. R. Cheriton. Amaze: A multiplayer computer game. IEEE Software,

2(3):30–39, May 1985.

[22] B. Berkowitz. Happy Meals, Pentiums coming to video game world. Reuters, Sept. 16, 2002.

[cited 17 Sept. 2002; 08:53 BST] Available from Internet: <http://investor.cnet.

com/investor/news/newsitem/0-9900-1028-20419348-0.html>.

[23] Y. W. Bernier. Latency Compensating Methods in Client/Server In-game Protocol Design

and Optimization. In Proceedings of the 15th Games Developers Conference, San Jose, CA,

USA, Mar. 2001. [cited 26 May 2002; 13:33 BST] Available from Internet: <http://www.

gdconf.com/archives/proceedings/2001/bernier.doc>.

[24] J. P. Bichard. Re: [GAMESNETWORK] The Medium That Has Not Yet Spo-

ken Its Name, Sept. 10, 2002. E-mail to Games Research Network mailing list

<GAMESNETWORK@liaani.UTA.FI>.

[25] S. Blake, D. L. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architecture for

Differentiated Services, Dec. 1998. RFC 2475.

References 139

[26] B. Blau, C. E. Hughes, M. J. Moshell, and C. Lisle. Networked virtual environments. In Pro-

ceedings of the 1992 Symposium on Interactive 3D Graphics, pages 157–160, Cambridge, MA,

USA, June 1992.

[27] N. S. Blomquist. Interdependent behavior and the effect of taxes. Journal of Public Economics,

51(2):211–218, June 1993.

[28] J. Blow. A look at latency in networked games. Game Developer, 5(7):28–40, July 1998.

[29] V. A. Bolotin. Modeling Call Holding Time Distributions for CCS Network Design and Per-

formance Analysis. IEEE Journal of Selected Areas In Communications, 12(3):433–438, Apr.

1994.

[30] M. S. Borella. Source Models of Network Game Traffic. Computer Communications, 23(4):403–

410, Feb. 15, 2000.

[31] G. E. Box and G. M. Jenkins. Time series analysis: forecasting and control. McGraw-Hill,

London, UK, 1970.

[32] R. Braden, D. Clark, and S. Shenker. Integrated Services in the Internet Architecture: an

Overview, June 1994. RFC 1633.

[33] C. M. Braun and J. Giroux. Arcade Video Games: Proxemic, Cognitive and Content Analyses.

Journal of Leisure Research, 21(2):92–105, 1989.

[34] A. J. Byer and D. Abrams. A comparison of the triangular and two-sample taste-test methods.

Food Technology, 7(4):185–187, Apr. 1953.

[35] M. Bylund and F. Espinoza. Using Quake III Arena to Simulate Sensors and Actuators when

Evaluating and Testing Mobile Services. In Short Talk presented at the CHI 2001 Conference on

Human factors in computing systems, Seattle, WA, USA, Mar. 2001.

[36] E. Castronova. Virtual Worlds: A First-Hand Account of Market and Society on the Cy-

berian Frontier. Technical Report 618, Center for Economic Studies and Ifo Institute for

Economic Research, California State University, Fullerton, CA, USA, Dec. 2001. [cited 19

June 2002; 08:20 BST] Available from Internet: <http://papers.ssrn.com/sol3/

papers.cfm?abstract_id=294828>.

[37] CERT Coordination Center. Smurf IP Denial-of-Service Attacks, Jan. 1998. CERT Advisory CA-

1998-01, [cited 26 Sept. 2002; 11:42 BST] Available from Internet: <http://www.cert.

org/advisories/CA-1998-01.html>.

[38] L. Chappell and R. Spicer. Is your Network Doomed? NetWare Connection, Jan./Feb. 1996.

[cited 26 Sept. 2002; 11:18 BST] Available from Internet: <http://www.nwconnection.

com/jan-feb.96/doomed/>.

[39] C. Chatfield. The Analysis of Time Series. Chapman & Hall, London, UK, fifth edition, 1996.

[40] D. Cheriton. The V distributed system. Communications of the ACM, 31(3):314–333, Mar. 1988.

[41] S. Cheshire. Latency and the Quest for Interactivity, Nov. 1996. White paper commissioned

by Volpe Welty Asset Management, L.L.C., for the Synchronous Person-to-Person Interactive

Computing Environments Meeting, [cited 26 May 2002; 13:32 BST] Available from Internet:

<http://www.stuartcheshire.org/papers/LatencyQuest.ps>.

References 140

[42] D. M. Chiu. Some Observations on Fairness of Bandwidth Sharing. In Proceedings of the 5th

IEEE Symposium on Computers and Communications (ISCC), pages 125–131, Antibes, France,

July 2000.

[43] T. Chiueh. Distributed systems support for networked games. In Proceedings of the 6th Workshop

on Hot Topics in Operating Systems (HotOS-VI), pages 99–104, Cape Cod, MA, USA, May 1997.

[44] J. C. Chuang and M. A. Sirbu. Pricing Multicast Communication: A Cost-Based Approach. In

Proceedings of the 8th Internet Society Conference (INET), Geneva, Switzerland, July 1998.

[45] D. Cohen. Specifications for the Network Voice Protocol (NVP), Jan. 1976. RFC 741.

[46] C. Crawford. The Art of Computer Game Design. Osborne/McGraw-Hill, Berkeley, CA,

USA, 1982. [cited 22 June 2002; 09:40 BST] Available from Internet: <http://www.

vancouver.wsu.edu/fac/peabody/game-book/Coverpage.html>.

[47] N. Croal. Making a Killing at Quake. Newsweek, page 104, Nov. 22, 1997.

[48] E. Cronin, B. Filstrup, and S. Jamin. Cheat-Proofing Dead Reckoned Multiplayer Games. In

Proceedings of the 2nd International Conference on Application and Development of Computer

Games, Hong Kong, Jan. 2003.

[49] E. Cronin, B. Filstrup, A. R. Kurc, and S. Jamin. An Efficient Synchronization Mechanism for

Mirrored Game Architectures. In Proceedings of the First Workshop on Network and System

Support for Games (NetGames2002), pages 67–73, Braunschweig, Germany, Apr. 2002.

[50] M. E. Crovella and A. Bestavros. Self-Similarity in World Wide Web Traffic: Evidence and

Possible Causes. IEEE/ACM Transactions on Networking, 5(6):835–846, Dec. 1997.

[51] M. F. Daneshmand, R. R. Roy, and C. G. Savolaine. Framework and requirements of Qual-

ity of Service for multimedia applications. In Proceedings of the 1997 IASTED International

Conference on Intelligent Information Systems (IIS ’97), pages 466–474, Grand Bahama Island,

Bahamas, Dec. 1997.

[52] Datacomm Research Company. Winning Business Strategies for Mobile Games, July 2002. [cited

20 Sept. 2002; 15:50 BST] Available from Internet: <http://www.datacommresearch.

com/competitiveedge/summary/wbsmg.asp>.

[53] DataMonitor. Online Games and Gambling, 1999-2004, Nov. 1999.

[54] DataMonitor. The Future of Wireless Gaming, Sept. 2000.

[55] R. Dawkins. The Selfish Gene. Oxford University Press, Oxford, UK, 1976.

[56] G. Day. Online games: crafting persistent-state worlds. IEEE Computer, 34(10):111–112, Oct.

2001.

[57] K. E. Dill and J. C. Dill. Video game violence; A review of the empirical literature. Aggression

and Violent Behavior, 3(4):407–428, Winter 1998.

[58] J. S. Duesenberry. Income, Saving, and the Theory of Consumer Behavior. Harvard University

Press, Cambridge, MA, USA, 1949.

[59] N. Economides and C. Himmelberg. Critical Mass and Network Evolution in Telecommuni-

cations. In G. W. Brock, editor, Toward a Competitive Telecommunications Industry: Selected

Papers from the 1994 Telecommunications Policy Research Conference. Lawrence Erlbaum As-

sociates, Mahwah, NJ, USA, 1995.

References 141

[60] Inside Sony Online Entertainment. Edge, 102:56–61, Oct. 2001.

[61] H. J. Einsiedler and P. Hurley. Link Weighting: An Important Basis for Charging in the Internet.

In Proceedings of Global Internet ’98, Sydney, Australia, Nov. 1998.

[62] European Leisure Software Publishers Association (ELSPA): Weekly Chart Summary, May 05,

2002. [cited 18 June 2002; 09:10 BST] Available from Internet: <http://www.elspa.

com/research/chart.asp>.

[63] J. Färber. Network Game Traffic Modelling. In Proceedings of the First Workshop on Network

and System Support for Games (NetGames2002), pages 53–57, Braunschweig, Germany, Apr.

2002.

[64] J. R. Faria. Scientific, business and political networks in academia. Research in Economics,

56(2):187–198, June 2002.

[65] A. Feldmann, A. C. Gilbert, W. Willinger, and T. G. Kurtz. The Changing Nature of Network

Traffic: Scaling Phenomena. Computer Communication Review, 28(2):5–29, Apr. 1998.

[66] S. Fischer, A. Hafid, G. von Bochmann, and H. de Meer. Cooperative QoS Management for Mul-

timedia Applications. In Proceedings of the 4th IEEE International Conference on Multimedia

Computing and Systems (ICMCS), pages 303–310, Ottawa, Canada, June 1997.

[67] E. Frécon and M. Stenius. DIVE: A Scaleable network architecture for distributed virtual envi-

ronments. Distributed Systems Engineering Journal, 5(3):91–100, Sept. 1998.

[68] FreeCiv. [cited 29 May 2002; 10:44 BST] Available from Internet: <http://www.

freeciv.org>.

[69] M. Fuchs and S. Eckermann. From “First-Person Shooter” to Multi-user Knowledge Spaces.

In Proceedings of Computational Semiotics for Games and New Media (COSIGN) 2001, pages

83–87, Amsterdam, The Netherlands, Sept. 2001.

[70] T. Funkhouser. Network Topologies for Scalable Multi-User Virtual Environments. In Proceed-

ings of the Virtual Reality Annual International Symposium 1996 (VRAIS ’96), pages 222–229,

Santa Clara, CA, USA, Apr. 1996.

[71] S. Gallagher and S. H. Park. Innovation and competition in standard-based industries: A historical

analysis of the US home video game market. IEEE Transactions on Engineering Management,

49(1):67–82, Feb. 2002.

[72] GameSpy. [cited 26 May 2002; 13:25 BST] Available from Internet: <http://www.

gamespy3d.com>.

[73] C. M. Gorriz and C. Medina. Engaging Girls with Computers Through Software Games. Com-

munications of the ACM, 43(1):42–49, Jan. 2000.

[74] R. Gossweiler, R. J. Laferriere, M. L. Keller, and R. Pausch. An Introductory Tutorial for De-

veloping Multiuser Virtual Environments. Presence: Teleoperators and Virtual Environments,

3(4):255–264, Fall 1994.

[75] Graphics Visualization and Usability Center, Georgia Institute of Technology. 10th WWW User

Survey, Dec. 1998. [cited 26 May 2002; 13:36 BST] Available from Internet: <http://www.

gvu.gatech.edu/user_surveys/survey-1998-10/>.

References 142

[76] C. Greenhalgh and S. Benford. MASSIVE: a collaborative virtual environment for teleconfer-

encing. ACM Transactions on Computer-Human Interaction, 2(3):239–261, Sept. 1995.

[77] C. Greenhalgh, S. Benford, and M. Craven. Patterns of network and user activity in an inhab-

ited television event. In Proceedings of the ACM symposium on Virtual Reality Software and

Technology, pages 34–41, London, UK, Dec. 1999.

[78] M. Griffiths. Does Internet and Computer ’Addiction’ Exist?: Some Case Study Evidence. In

Internet Research and Information for Social Scientists (IRISS 98), Bristol, UK, Mar. 1998. [cited

28 May 2002; 22:24 BST] Available from Internet: <http://www.sosig.ac.uk/iriss/

papers/paper47.htm>.

[79] C. Griwodz. State replication for multiplayer games. In Proceedings of the First Workshop on

Network and System Support for Games (NetGames2002), pages 29–35, Braunschweig, Ger-

many, Apr. 2002.

[80] G. Hardin. The Tragedy of the Commons. Science, 162:1243–1248, Dec. 1968.

[81] K. Harrenstien, M. Stahl, and E. Feinler. NICNAME/WHOIS, Oct. 1985. RFC 954.

[82] T. Henderson. Latency and user behaviour on a multiplayer game server. In Proceedings of the

3rd International Workshop on Networked Group Communication (NGC), pages 1–13, London,

UK, Nov. 2001.

[83] T. Henderson. Observations on game server discovery mechanisms. In Proceedings of the First

Workshop on Network and System Support for Games (NetGames2002), pages 47–52, Braun-

schweig, Germany, Apr. 2002.

[84] T. Henderson and S. Bhatti. Modelling user behaviour in networked games. In Proceedings of

the 9th ACM Multimedia Conference, pages 212–220, Ottawa, Canada, Oct. 2001.

[85] T. N. Henderson and S. N. Bhatti. Protocol-independent multicast pricing. In Proceedings of the

10th International Workshop on Network and Operating System Support for Digital Audio and

Video (NOSSDAV), pages 11–17, Chapel Hill, NC, USA, June 2000.

[86] D. Henriet and H. Moulin. Traffic-based cost allocation in a network. RAND Journal of Eco-

nomics, 27(2):332–345, Summer 1996.

[87] S. Herzog, S. Shenker, and D. Estrin. Sharing the “Cost” of Multicast Trees: An Axiomatic

Analysis. In Proceedings of ACM SIGCOMM ’95, pages 315–327, Cambridge, MA, USA, Aug.

1995.

[88] B. M. Hill. A simple general approach to inference about the tail of a distribution. The Annals of

Statistics, 3(5):1163–1174, Sept. 1975.

[89] H. Hotelling. Stability in Competition. Economic Journal, 39(153):41–57, Mar. 1929.

[90] F. hsiung Hsu. Computer Chess, Then And Now: The Deep Blue Saga. In Proceedings of the

1997 International Symposium on VLSI Technology, Systems, and Applications, pages 153–156,

Taipei, Taiwan, June 1997.

[91] T. Ingvaldsen, E. Klovning, and M. Wilkins. Determining the causes of end-to-end delay in

CSCW applications. Computer Communications, 23(3):219–232, Feb. 01, 2000.

References 143

[92] Institute of Electrical and Electronic Engineers. 1278.2-1995, IEEE Standard for Distributed

Interactive Simulation — Communication Services and Profiles. IEEE, New York, NY, USA,

Apr. 1996.

[93] Institute of Electrical and Electronic Engineers. 1516-2000, IEEE Standard for Modeling and

Simulation (M&S) High Level Architecture (HLA) — Framework and Rules. IEEE, New York,

NY, USA, Sept. 2000.

[94] International Hobo. Re: [Digiplay] Etymology of “frag”, Oct. 07, 2002. E-mail to

digiplay mailing list <digiplay@topica.com>, [cited 12 Oct. 2002; 15:25 BST] Available

from Internet: <http://topica.com/lists/digiplay/read/message.html?

mid=905457028>.

[95] International Organization for Standardization. ISO 690-2:1997: Information and documenta-

tion — Bibliographic references — Part 2: Electronic documents or parts thereof. International

Organization for Standardization, Geneva, Switzerland, Nov. 2001.

[96] International Telecommunication Union. ITU-T Recommendation H.323: Packet-Based Multi-

media Communications Systems. International Telecommunication Union, Geneva, Switzerland,

Feb. 1998.

[97] International Telecommunication Union. ITU-R Recommendation BT.500: Methodology for the

subjective assessment of the quality of television pictures. International Telecommunication

Union, Geneva, Switzerland, Mar. 2000.

[98] International Telecommunication Union. ITU-T Recommendation G.114: International tele-

phone connections and circuits — General Recommendations on the transmission quality for an

entire international telephone connection — One-way transmission time. International Telecom-

munication Union, Geneva, Switzerland, May 2000.

[99] Internet Software Consortium. Internet Domain Survey, July 2001. [cited 17 Sept.

2002; 17:07 BST] Available from Internet: <http://www.isc.org/ds/WWW-200107/

dist-bynum.html>.

[100] ITU Internet Reports 2002. Internet for a Mobile Generation. Technical report, International

Telecommunication Union, Geneva, Switzerland, Sept. 2002.

[101] J. Jacobson and Z. Hwang. Unreal Tournament for immersive interactive theater. Communica-

tions of the ACM, 45(1):39–42, Jan. 2002.

[102] V. Jacobson, C. Leres, and S. McCanne. tcpdump. [cited 20 Sept. 2002; 10:49 BST] Available

from Internet: <http://www.tcpdump.org>.

[103] V. Jacobson, K. Nichols, and K. Poduri. An Expedited Forwarding PHB, June 1999. RFC 2598.

[104] T. JNT Association. The JANET Report 2000-2001, July 2001. [cited 25 Oct. 2002; 20:55

BST] Available from Internet: <http://www.ja.net/documents/janetreport/

report2001.pdf>.

[105] B. E. John and A. H. Vera. A GOMS Analysis of a Graphic, Machine-Paced, Highly Interactive

Task. In Proceedings of the CHI ’92 Conference on Human factors in computing systems, pages

251–258, Monterey, CA, USA, May 1992.

References 144

[106] S. K. Joyce. Traffic on the Internet — A study of Internet games, Oct. 2000. A report submitted in

partial fulfillment of the requirements for the degree of Bachelor of Computing and Mathematical

Sciences, [cited 26 May 2002; 13:36 BST] Available from Internet: <http://wand.cs.

waikato.ac.nz/wand/publications/sarah-420.ps.gz>.

[107] M. L. Katz and C. Shapiro. Network Externalities, Competition, and Compatibility. American

Economic Review, 75(3):424–440, June 1985.

[108] F. P. Kelly. Charging and rate control for elastic traffic. European Transactions on Telecommuni-

cations, 8(1):33–37, Jan./Feb. 1997.

[109] P. Key, L. Massoulié, and J. K. Shapiro. Service Differentiation for Delay-Sensitive Applications:

An Optimisation-Based Approach. Performance Evaluation, 49(1-4):471–489, Sept. 2002.

[110] I. Kouvelas, V. Hardman, and J. Crowcroft. Network Adaptive Continuous-Media Applications

Through Self-Organised Transcoding. In Proceedings of the 8th International Workshop on Net-

work and Operating System Support for Digital Audio and Video (NOSSDAV), pages 241–255,

Cambridge, UK, July 1998.

[111] Lag City — The Quake Lag Page. [cited 13 June 2002; 12:45 BST] Available from Internet:

<http://www.planetquake.com/lagcity/>.

[112] J. C. Laird. It knows what you’re going to do: adding anticipation to a Quakebot. In Proceedings

of the 5th International Conference on Autonomous Agents, pages 385–392, Montreal, Canada,

May 2001.

[113] E. Lamb. A cross section of privately held game companies. Red Herring, 96:100–102, Apr. 15,

2001.

[114] J. Larkin. Winning the Monster Game. Far Eastern Economic Review, page 32, Sept. 05, 2002.

[115] J. Lawry, R. Upitis, M. Klawe, A. Anderson, K. Inkpen, M. Ndunda, D. Hsu, S. Leroux, and

K. Sedighian. Exploring Common Conceptions About Boys and Electronic Games. Journal of

Computers in Math and Science Teaching, 14(4):439–459, 1995.

[116] A. Legout, J. Nonnenmacher, and E. Biersack. Bandwidth Allocation Policies for Unicast and

Multicast Flows. In Proceedings of the 18th IEEE Conference on Computer Communications

(INFOCOM), volume 1, pages 254–261, New York, NY, USA, Mar. 1999.

[117] H. Leibenstein. Bandwagon, Snob, and Veblen Effects in the Theory of Consumers’ Demand.

Quarterly Journal of Economics, 64(2):183–207, May 1950.

[118] W. E. Leland and D. V. Wilson. High time-resolution measurement and analysis of LAN traffic:

Implications for LAN interconnection. In Proceedings of the 10th IEEE Conference on Computer

Communications (INFOCOM), volume 3, pages 1360–1366, Bal Harbour, FL, USA, Apr. 1991.

[119] T. Lenoir. All but War Is Simulation: The Military-Entertainment Complex. Configurations,

8(3):289–335, Fall 2000.

[120] E. Lety, L. Gautier, and C. Diot. MiMaze, a 3D Multi-player Game on the Internet. In Proceed-

ings of the 4th International Conference on Virtual Systems and Multimedia, Gifu, Japan, Nov.

1998.

[121] S. Levy. Hackers. Penguin Books, London, UK, 1984.

References 145

[122] M. Lewis and J. Jacobson. Game Engines in Scientific Research. Communications of the ACM,

45(1):27–31, Jan. 2002.

[123] R. Likert. A technique for the measurement of attitudes. Archives of Psychology, 140:5–53, June

1932.

[124] G. M. Ljung and G. E. P. Box. On a measure of lack of fit in time series models. Biometrika,

65(2):297–303, Aug. 1978.

[125] I. S. MacKenzie and C. Ware. Lag as a Determinant of Human Performance in Interactive Sys-

tems. In Proceedings of the CHI ’93 Conference on Human factors in computing systems, pages

488–493, Amsterdam, The Netherlands, Apr. 1993.

[126] J. K. MacKie-Mason and H. R. Varian. Some Economics of the Internet. In W. Sichel and

D. L. Alexander, editors, Networks, Infrastructure and the New Task for Regulation. University

of Michigan Press, 1996.

[127] T. Manninen. Interaction in Networked Virtual Environments as Communicative Action — So-

cial Theory and Multi-player Games. In Proceedings of the Sixth International Workshop on

Groupware (CRIWG2000), pages 154–157, Madeira, Portugal, Oct. 2000.

[128] T. Manninen. Virtual Team Interactions in Networked Multimedia Games — Case: “Counter-

Strike” — Multi-player 3D Action Game. In Proceedings of the 4th Annual International Work-

shop on Presence (PRESENCE 2001), Philadephia, PA, USA, May 2001.

[129] L. Mathy, C. Edwards, and D. Hutchison. Principles of QoS in group communications. Telecom-

munication Systems, 11(1-2):59–84, 1999.

[130] M. Mauve. How to keep a dead man from shooting. In Proceedings of the 7th International Work-

shop on Interactive Distributed Multimedia Systems and Telecommunication Services (IDMS),

pages 199–204, Enschede, The Netherlands, Oct. 2000.

[131] M. Mauve, S. Fischer, and J. Widmer. A Generic Proxy System for Networked Computer

Games. In Proceedings of the First Workshop on Network and System Support for Games

(NetGames2002), pages 25–28, Braunschweig, Germany, Apr. 2002.

[132] S. McCanne, V. Jacobson, and M. Vetterli. Receiver-driven Layered Multicast. In Proceedings

of ACM SIGCOMM ’96, pages 117–130, Palo Alto, CA, USA, Aug. 1996.

[133] J. F. McCarthy. Active Environments: Sensing and Responding to Groups of People. Journal of

Personal and Ubiquitous Computing, 5(1):75–77, 2001.

[134] S. McCreary and K. Claffy. Trends in Wide Area IP Traffic Patterns: A View from Ames Internet

Exchange. In Proceedings of the ITC Specialist Seminar on IP Traffic Modeling, Measurement

and Management, Monterey, CA, USA, Sept. 2000. [cited 14 June 2002; 12:51 BST] Available

from Internet: <http://www.caida.org/outreach/papers/2000/AIX0005/>.

[135] A. I. McLeod. Diagnostic Checking Periodic Autoregression Models with Application. The

Journal of Time Series Analysis, 15(2):221–233, 1994.

[136] E. Medina. Yahoo enters game rental arena. Boston Globe, page C3, Sept. 23, 2002.

[137] R. M. Metcalfe. The Internet After the Fad. In The 1996 Monticello Lectures, Monticello, VA,

USA, May 1996. [cited 26 May 2002; 13:37 BST] Available from Internet: <http://www.

americanhistory.si.edu/csr/comphist/montic/metcalfe.htm>.

References 146

[138] Microsoft Xbox. [cited 3 July 2002; 16:01 BST] Available from Internet: <http://www.

microsoft.com/xbox>.

[139] S. Miller. On the effects of network packet loss on Half-Life. Technical report, University College

London, London, UK, 2002. Project submitted as part requirement for the M.Sc in Computer

Science.

[140] J. Milnor. A Nobel Prize for John Nash. The Mathematical Intelligencer, 17(3):11–17, Summer

1995.

[141] D. Min, E. Choi, D. Lee, and B. Park. A load balancing algorithm for a distributed multimedia

game server architecture. In Proceedings of the IEEE International Conference on Multimedia

Computing and Systems, volume 2, pages 882–886, Florence, Italy, June 1999.

[142] M. Minges. Counting the Net: Internet Access Indicators. In Proceedings of the 10th Internet

Society Conference (INET), Yokohama, Japan, July 2000.

[143] J. Morahan-Martin and P. Schumacher. Incidence and correlates of pathological Internet use

among college students. Computers in Human Behavior, 16(1):13–29, Jan. 2000.

[144] netfilter/iptables project. [cited 24 June 2002; 10:19 BST] Available from Internet: <http:

//netfilter.samba.org>.

[145] NetValue. Internet Overview — Your Key To the Internet Landscape, Feb. 2001. [cited 29 May

2002; 20:14 BST] Available from Internet: <http://www.netvalue.com/corp/pdf/

internet_overview_promosheet.pdf>.

[146] N. H. Nie and L. Erbring. Internet and Society — A Preliminary Report. Technical report, Stan-

ford Institute for the Quantitative Study of Society, Stanford, CA, USA, Feb. 16, 2000. [cited 26

May 2002; 13:38 BST] Available from Internet: <http://www.stanford.edu/group/

siqss/Press_Release/Preliminary_Report.pdf>.

[147] NIST Net network emulation package. [cited 18 Sept. 2002; 16:51 BST] Available from Internet:

<http://snad.ncsl.nist.gov/itg/nistnet/>.

[148] V. N. Padmanabhan and L. Subramanian. An Investigation of Geographic Mapping Techniques

for Internet Hosts. In Proceedings of ACM SIGCOMM 2001, pages 173–185, San Diego, CA,

USA, Aug. 2001.

[149] W. H. Page and J. E. Lopatka. Network Externalities. In B. Bouckaert and G. D. Geest, editors,

Encyclopedia of Law and Economics, pages 952–980. Edward Elgar, Aldershot, UK, 2000.

[150] L. Pantel and L. C. Wolf. On the Impact of Delay on Real-Time Multiplayer Games. In Proceed-

ings of the 12th International Workshop on Network and Operating System Support for Digital

Audio and Video (NOSSDAV), pages 23–29, Miami Beach, FL, USA, May 2002.

[151] L. Pantel and L. C. Wolf. On the Suitability of Dead Reckoning Schemes for Games. In Proceed-

ings of the First Workshop on Network and System Support for Games (NetGames2002), pages

79–84, Braunschweig, Germany, Apr. 2002.

[152] K. S. Park and R. V. Kenyon. Effects of network characteristics on human performance in a

collaborative virtual environment. In Proceedings of IEEE VR 1999, pages 104–111, Houston,

TX, USA, Mar. 1999.

References 147

[153] A. Patrizio. Coming Soon: Pay-Per-Game. Wired News, Oct. 20, 2000. [cited 26 May 2002; 13:25

BST] Available from Internet: <http://www.wired.com/news/culture/0,1284,

39505,00.html>.

[154] V. Paxson and S. Floyd. Wide-Area Traffic: The Failure of Poisson Modeling. IEEE/ACM

Transactions on Networking, 3(3):226–244, June 1995.

[155] L. Phlips. The Economics of Price Discrimination. Cambridge University Press, Cambridge,

UK, 1983.

[156] A. Postlewaite. The social basis of interdependent preferences. European Economic Review,

42(3-5):779–800, May 1998.

[157] J. A. Price. Social Science Research on Video Games. Journal of Popular Culture, 18(4):111–

125, Spring 1985.

[158] J. M. Pullen and D. C. Wood. Networking Technology and DIS. Proceedings of the IEEE,

83(8):1156–1167, Aug. 1995.

[159] QStat. [cited 26 May 2002; 13:26 BST] Available from Internet: <http://www.qstat.

org>.

[160] H. Rachlin. Altruism and Selfishness. Behavioral and Brain Sciences, Aug. 2001. In press,

[cited 21 Oct. 2002; 11:33 BST] Available from Internet: <http://www.bbsonline.org/

Preprints/Rachlin/>.

[161] M. Ranta-aho, A. Leppinen, G. Poulain, A. Roella, M. Mirabelli, A. Ousland, and J. Norgaard.

Task-dependent user requirements for Quality of service of Videoconferencing-CSCW services.

In Proceedings of the 16th International Symposium on Human Factors in Telecommunications,

pages 251–254, Oslo, Norway, May 1997.

[162] K. Ravindran and T.-J. Gong. Cost Analysis of Multicast Transport Architectures in Multiservice

Networks. IEEE/ACM Transactions on Networking, 6(1):94–109, Feb. 1998.

[163] D. P. Reed. Going Nowhere Fast. Context Magazine, July/Aug. 1999. [cited 18 June 2002; 17:10

BST] Available from Internet: <http://www.contextmag.com/archives/199907/

TheGreatLie.asp>.

[164] D. P. Reed. Weapon of Math Destruction. Context Magazine, Spring 1999. [cited 26 May 2002;

13:39 BST] Available from Internet: <http://www.contextmag.com/archives/

199903/DigitalStrategy.asp>.

[165] Resource ranges allocated by APNIC. [cited 31 May 2002; 16:07 BST] Available from Internet:

<http://www.apnic.net/db/ranges.html>.

[166] L. Rizzo. Dummynet: A Simple Approach to the Evaluation of Network Protocols. Computer

Communication Review, 27(1):31–41, Jan. 1997.

[167] L. Rizzo, L. Vicisano, and J. Crowcroft. TCP-like congestion control for layered multicast data

transfer. In Proceedings of the 17th IEEE Conference on Computer Communications (INFO-

COM), volume 3, pages 996–1003, San Francisco, CA, USA, Mar. 1998.

[168] N. Schactman. EverQuest: The Latest Addiction. Wired News, July 29, 1999. [cited 19 June

2002; 07:55 BST] Available from Internet: <http://www.wired.com/news/culture/

0,1284,20984,00.html>.

References 148

[169] N. Schactman. The Real Second Coming of Diablo. Wired News, May 22, 2000. [cited

28 May 2002; 15:49 BST] Available from Internet: <http://www.wired.com/news/

technology/0,1284,36263,00.html>.

[170] C. Schaefer, T. Enderes, H. Ritter, and M. Zitterbart. Subjective Quality Assessment for Multi-

player Real-Time Games. In Proceedings of the First Workshop on Network and System Support

for Games (NetGames2002), pages 74–78, Braunschweig, Germany, Apr. 2002.

[171] K. Schmidt and L. Bannon. Taking CSCW Seriously: Supporting Articulation Work. Computer

Supported Cooperative Work: An International Journal, 1(1-2):7–40, 1992.

[172] Sega Dreamcast. [cited 3 July 2002; 15:50 BST] Available from Internet: <http://www.

sega.com/games/dreamcast/hardware.jhtml>.

[173] B. Shelley. Transcript of presentation on Aesthetics of Game Design. In Computer and

Video Games come of age: A national conference to explore the state of an emerging en-

tertainment medium. MIT Program in Comparative Media Studies, Feb. 2000. [cited 22

June 2002; 11:47 BST] Available from Internet: <http://web.mit.edu/cms/games/

aesthetics.html>.

[174] S. R. Sherman. Perils of the Princess: Gender and Genre in Video Games. Western Folklore, 56(3

and 4):243–258, Summer/Fall 1997.

[175] D. J. Sheskin. Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press,

Boca Raton, FL, USA, 1997.

[176] Z. B. Simpson. The In-game Economics of Ultima Online. In Proceedings of the 14th Games

Developers Conference, San Jose, CA, USA, Mar. 2000. [cited 19 June 2002; 08:24 BST] Avail-

able from Internet: <http://www.gdconf.com/archives/proceedings/2000/

simpson.doc>.

[177] S. Singhal and M. Zyda. Networked Virtual Environments — Design and Implementation. ACM

Press, New York, NY, USA, 1999.

[178] Sky Digital. [cited 22 Oct. 2002, 11:02 BST] Available from Internet: <http://www.sky.

com/skycom/article/0,,70043-1046815,00.html>.

[179] Slashdot.org. How Fast Too Slow? A Study Of Quake Pings, May 24, 2001. [cited 28 May 2002;

10:33 BST] Available from Internet: <http://slashdot.org/articles/01/05/24/

2044233.shtml>.

[180] A. Smith. The Theory of the Moral Sentiments. A. Millar, London, UK, 1759.

[181] Sony PlayStation 2. [cited 3 July 2002; 16:02 BST] Available from Internet: <http://uk.

playstation.com/hardware/ps2Console.jhtml>.

[182] Sophos Anti-Virus plc. Sophos virus analysis: W32/Rodok-A. [cited 11 Oct. 2002, 18:18

BST] Available from Internet: <http://www.sophos.com/virusinfo/analyses/

w32rodoka.html>.

[183] H. Stone, J. Sidel, S. Oliver, A. Woolsey, and R. C. Singleton. Sensory Evaluation by Quantitative

Descriptive Analysis. Food Technology, 28(11):24–34, Nov. 1974.

References 149

[184] R. J. Swickert, J. B. Hittner, J. L. Harris, and J. A. Herring. Relationships among Internet use,

personality, and social support. Computers in Human Behavior, 18(4):437–451, July 2002.

[185] M. Terrano and P. Bettner. 1500 Archers on a 28.8: Network Programming in Age of Empires and

Beyond. In Proceedings of the 15th Games Developers Conference, San Jose, CA, USA, Mar.

2001. [cited 26 Sept. 2002; 14:59 BST] Available from Internet: <http://www.gdconf.

com/archives/proceedings/2001/terrano_1500arch.doc>.

[186] F. D. Tran, M. Deslaugiers, A. Gérodolle, L. Hazard, and N. Rivierre. An open middleware for

large-scale networked virtual environments. In Proceedings of the IEEE Virtual Reality Confer-

ence 2002, pages 22–29, Orlando, FL, USA, Mar. 2002.

[187] Ultima Online — Advanced Character Service. [cited 19 Sept. 2002; 07:06 BST] Available from

Internet: <http://support.uo.com/advancedcharacter.html>.

[188] Urban Mercenary. [cited 26 May 2002; 13:26 BST] Available from Internet: <http://www.

urbanmercenary.com>.

[189] I. Vaghi, C. Greenhalgh, and S. Benford. Coping with inconsistency due to network delays in

collaborative virtual environments. In Proceedings of the ACM symposium on Virtual reality

software and technology, pages 42–49, London, UK, Dec. 1999.

[190] J. L. von Neumann and O. Morgenstern. Theory of Games and Economic Behavior. Princeton

University Press, Princeton, NJ, USA, 1944.

[191] A. Watson and M. A. Sasse. Measuring Perceived Quality of Speech and Video in Multimedia

Conferencing Applications. In Proceedings of the 6th ACM Multimedia Conference, pages 55–

60, Bristol, UK, Sept. 1998.

[192] J. Widmer, M. Mauve, and J. P. Damm. Probabilistic Congestion Control for Non-Adaptable

Flows. In Proceedings of the 12th International Workshop on Network and Operating System

Support for Digital Audio and Video (NOSSDAV), pages 13–21, Miami Beach, FL, USA, May

2002.

[193] D. Williams. Structure and Competition in the U.S. Home Video Game Industry. The Interna-

tional Journal on Media Management, 4(1):41–54, 2002.

[194] R. B. Williams and C. A. Clippinger. Aggression, competition and computer games: computer

and human opponents. Computers in Human Behavior, 18(5):495–506, Sept. 2002.

[195] S. Williamson, M. Kosters, D. Blacka, J. Singh, and K. Zeilstra. Referral Whois (RWhois)

Protocol V1.5, June 1997. RFC 2167.

[196] W. Willinger, V. Paxson, and M. S. Taqqu. Self-similarity and Heavy Tails: Structural Modeling

of Network Traffic. In R. J. Adler, R. E. Feldman, and M. S. Taqqu, editors, A Practical Guide to

Heavy Tails — Statistical Techniques and Applications, pages 27–53. Birkhäuser, Boston, MA,

USA, 1998.

[197] D. J. Zizzo and A. J. Oswald. Are People Willing to Pay to Reduce Others’ Incomes? Annales

d’Economie et de Statistique, 63-64:39–66, July/Dec. 2001.

