
IRONMAN: Using social networks to add

incentives and reputation to opportunistic networks

Greg Bigwood and Tristan Henderson

School of Computer Science

University of St Andrews

St Andrews, Fife, UK

{gjb,tristan}@cs.st-andrews.ac.uk

Abstract—Opportunistic networks enable users to communi-
cate in the absence of network infrastructure. But forwarding
messages in such a network incurs costs for nodes in terms of
energy and storage. This may lead to nodes being selfish and
not forwarding messages for other nodes, resulting in degraded
network performance. This paper presents a novel incentive
mechanism for opportunistic networks that uses pre-existing
social-network information to detect and punish selfish nodes,
incentivising them to participate in the network. Trace-driven
simulations demonstrate that our mechanism performs better
than existing mechanisms, and that social-network information
can also be used to improve existing incentive mechanisms.

I. INTRODUCTION

Even with the modern ubiquity of the Internet, there still

exist certain scenarios where current infrastructure networks

may be unable to provide a communication medium. Such

scenarios include areas when infrastructure networks are

unavailable or overloaded, e.g., developing nations, disaster

recovery scenarios, or even at busy concerts or sporting events.

In these scenarios we can leverage the social network of

human encounters to provide a mechanism for exchanging in-

formation: an Opportunistic Network [1]. As people encounter

each other, their wireless devices such as mobile phones can

communicate wirelessly, using every available opportunity,

to forward information from person to person. These oppor-

tunistic networks have been proposed for applications ranging

from messaging, participatory sensing and crowdsourced data-

retrieval, to ubiquitous mobile social networks.

Opportunistic networking relies on cooperation between

nodes, that is, the users participating in the network, to perform

efficiently. Opportunistic routing protocols depend on nodes

forwarding messages for each other, as otherwise the only

delivery mechanism would be for the creator of a message

to encounter the message destination node and deliver the

message directly. Cooperative forwarding, however, incurs a

cost to the forwarding nodes, both in terms of energy (battery

power) and storage (the space required to store forwarded

messages). Both of these are a constrained resource in mobile

devices such as those used in opportunistic networks.

Due to these costs, nodes may wish to avoid the costs

associated with participation in an opportunistic network, by

not forwarding messages for other nodes. Figure 1 shows the

results of an opportunistic network simulation where nodes
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Fig. 1. Simulation of an opportunistic network application using Epidemic
routing [2], and the Reality Mining mobile-phone trace [3]. As the proportion
of selfish nodes in the network increases, network performance in terms of
delivery ratio decreases.

act selfishly: the performance of the network, i.e., the number

of messages delivered, decreases rapidly as the percentage

of selfish nodes increases. If we can detect and discourage

selfish behaviour, it might be possible to achieve the same

performance as if no nodes are selfish, even if all the nodes

have a propensity for selfish behaviour.

But how can we create incentives for nodes to cooperate?

This paper investigates how to use social-network information

to do so. We present an incentive mechanism for oppor-

tunistic networks, IRONMAN (Incentives and Reputation for

Opportunistic Networks using sociAl Networks), that uses

social-network information to bootstrap the detection and

discouragement of selfishness. We demonstrate IRONMAN’s

superior performance over two existing incentive mechanisms,

and show how to improve existing mechanisms by using

social-network information.

The contributions of this paper are to show that:

• existing incentive mechanisms are inappropriate for op-

portunistic networks.

• social-network information can bootstrap a trust mecha-

nism to discourage selfishness in opportunistic networks.

Next, we discuss existing incentive mechanisms. We then

introduce our social-network-based incentive mechanism in



Section III. Section IV describes a set of trace-driven simula-

tions using three real-world traces, two routing protocols and

four different incentive mechanisms. Section V shows that our

protocol performs well across all traces and protocols. Finally

we conclude and discuss future work.

II. RELATED WORK

Incentives, reputation and trust have been extensively stud-

ied in peer-to-peer and mobile ad hoc networks, and more

recently, in sensor and delay-tolerant (DTN) networks. We

draw on work from these other fields to tailor an approach

suitable for opportunistic networks.

To combat selfishness, it must first be detected. Several

approaches use “watchdog” mechanisms [4]–[7], where a third

node oversees a message exchange between two nodes to

verify its authenticity. Such an approach, however, is in-

appropriate for opportunistic networks, as routes are rarely

static and the inter-contact times are large; neighbours are

not consistently available to monitor the behaviour of one

another. The most common detection approach is for all nodes

to monitor all their own encounters, and to exchange opinions

when they interact. Nodes then use these collated opinion data

to make decisions on the trustworthiness of individual nodes.

Many different mechanisms exist to create incentives to

discourage selfishness [8]: from bartering (a direct exchange of

services), to currency (behaviour that benefits other users earns

measurable credits exchangeable for services). In the middle

of this spectrum lies asynchronous bilateral trading: nodes

perform actions to benefit one another, but not necessarily at

the same point in time. Nodes can maintain a concept of credits

using this approach [8], but limits on the number of credits

are frequently needed to prevent credit explosion. Kangasharju

et al. use a similar approach for opportunistic networks [9] .

Wang and Li’s routing protocol for selfish and rational

wireless ad hoc networks assumes nodes compensate each

other for forwarding cost [10]. Their scheme however, assumes

that nodes in the multicast group do not charge each other for

data exchange. Suri and Narahari go further and develop a

scheme BIC-B, in which all nodes may charge one another

for forwarding [11]. BIC-B however, assumes a centralised

payment arbiter can allocate compensation for forwarding

cost based on knowledge of the forwarding paths, making it

inappropriate for use in opportunistic networks.

Yu et al.’s reputation system for peer-to-peer networks has

nodes build opinions of other nodes by analysing the quality

of service (QoS) that they receive from these nodes [12]. A

rating-discovery algorithm maintains consistency of ratings

across the network. Peer-to-peer networks, however, have

different properties to opportunistic networks. Even though

there is potentially high churn in peer-to-peer networks, it is

generally assumed that direct connectivity between any two

nodes in the peer-to-peer network is possible, which is unlikely

to be true in an opportunistic network.

For a disconnected opportunistic network, it is therefore

necessary to rely on the encounters between nodes as the

only way to exchange data and incentive mechanism control

traffic. To verify opinions, we must be able to prove that the

opinion is based on a real experience–how can we prove that

messages were exchanged, or that encounters occurred? One

way to validate encounters is to use encounter tickets [13], a

cryptographic mechanism nodes can use to prove encounters

and message exchanges took place. This allows nodes to build

up a history of message exchanges to use to construct an

opinion of other nodes. Nodes can exchange encounter tickets

and opinions during encounters.

Lu et al. propose an encounter-ticket-based incentive mech-

anism [14], but this requires a trusted authority (an out-of-

band oracle), which makes it inappropriate for opportunistic

networks. Li et al. use a history-based approach [15] which

floods control messages to the network, potentially consuming

lots of nodes’ resources.

RELICS [16] encourages cooperation through ranking.

Nodes estimate the likelihood of message delivery for each

of the nodes they encounter, and use this to rank nodes. A

node’s rank is improved by being on the forwarding path of

successful delivery. Nodes adjust their energy expenditure to

meet a desired delivery ratio threshold (decided a priori). By

expending more energy (forwarding more messages), nodes

can hope to deliver more messages, increasing their rank with

other nodes. Similarly if their delivery ratio is above the

threshold, nodes drop their energy expenditure.

To summarise, none of the existing mechanisms work where

infrastructure connectivity and delivery acknowledgements

cannot be assumed. We now present such a mechanism.

III. AN INCENTIVE MECHANISM FOR OPPORTUNISTIC

NETWORKS

Opportunistic networks exploit the interconnections of in-

dividuals as they go about their daily lives. In society we

form ties and connections with people around us, be it work

colleagues, friends or family. Our goal is to use a record of

these social-network data from self-reported social networks

(SRSNs) to bootstrap an incentive mechanism for opportunis-

tic networks. SRSNs can be obtained through interview, or

from an online social network (e.g., Facebook friends lists).

By viewing those members of the opportunistic network

that are also in a node’s SRSN as more trustworthy, we can

exploit the implicit trust relationships provided by the users.

Detecting selfish behaviour quickly is important, as it reduces

the amount of transmissions to (and due to) selfish nodes, and

therefore the energy wasted. We must balance this, however,

against being too cautious and presuming all nodes are selfish.

Most existing mechanisms are not bootstrapped to work from

network start-up; we use SRSNs to provide reputation for

nodes. We assume that individuals have implicit trust with

members of their SRSN: therefore, when the network starts

up, nodes assign higher trust values to nodes in their SRSN.

A. Detecting selfishness

We now present our IRONMAN mechanism. Consider the

following scenario (Figure 2): Alice wishes to send a package

to Bob. She first meets Eve, however, and gives Eve the
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Fig. 2. Nodes keep history of their encounters and message exchanges. When
nodes meet these histories are exchanged to detect selfishness.

package, believing Eve will meet Bob before Alice does. Eve

then meets Bob, and because Eve is selfish, does not give

Bob the package. Yet later, Alice meets Bob, and they discuss

their encounters. Alice mentions to Bob that she gave Eve a

package for Bob. Bob knows he met Eve, and therefore knows

Eve was being selfish by withholding the package. We extend

this analogy to opportunistic networks.

If nodes can store a history of encounter times and messages

exchanged, and exchange histories during encounters, we can

detect selfishness and altruism as seen in Algorithm 1. If a

node detects another as selfish, the detecting node decrements

its rating for the selfish node by the behaviour constant x.

Similarly, when nodes pass on a message for which they are

not the source: the receiver marks them as altruistic, and their

rating of the node receiving the message is incremented by x.

Additive increase and decrease are used to reduce the effect of

false positives, which can arise when a node pushes a message

out of its buffers due to congestion (giving the appearance that

it deliberately dropped the message).

Algorithm 1 IRONMAN Selfishness detection

1: x←behaviour constant

function EncounterNode(B):
1: history tuples ← [(exchange time, msg id, msg source,

node seen)]
2: exchange forwarding history with B
3: for all message exchanges in foreign history do
4: if exchange time > last encounter with B then
5: if msg destination == my id then
6: if last encounter with node seen > last encounter with B

then
7: if node seen did not give us msg id then
8: Ratingnode seen←Ratingnode seen− x

function ReceiveMessage(other node, msg src):
1: if other node 6= msg src then
2: Ratingother node←Ratingother node + x

Nodes store local ratings of encountered nodes, and ex-

change these during encounters. An encountered node’s trust

score is the sum of the local rating and foreign ratings. Upon

receiving a message the node checks if the source of the

message is the node forwarding. If so, and if the trust score

is not greater than the trust threshold, then the receiving node

will discard the message and notify the forwarding node that

it has been detected as selfish.

Nodes do not accept messages for which they believe the

source of the message to be selfish. To allow nodes that

have been deemed as selfish to improve their trust score,

nodes do pass messages to selfish nodes, allowing them to

forward these messages and therefore improve their ratings.

This approach does not punish nodes that are rarely given

messages to forward, it only punishes those that could have

given a message to a destination but did not. To prove that

encounters took place we assume the presence of encounter

tickets [13]. Nodes use this cryptographic mechanism to prove

that they exchanged messages, by obtaining a signed receipt

of message exchange.

While nodes do not need synchronised clocks, which can

be difficult in an opportunistic network, they must agree on

the relative ordering of encounters. When nodes encounter

one another they exchange the time they believe the current

encounter is taking place at; nodes can thus determine the time

when the encounters in the foreign history took place relative

to their own opinion of the correct time. Nodes can then use

this information despite potential differences in the perceived

time on the nodes. A similar mechanism to IRONMAN could

be used at the clock synchronisation layer to detect lying about

clock times. We leave this, however, to future work.

IV. EVALUATION

We evaluate IRONMAN’s performance through trace-driven

simulation of a simple message-passing application. As the

performance of an opportunistic network may vary depending

on the connectivity patterns of the nodes, we use three real-

world traces in our analysis:

1) Our “SASSY” connectivity trace, available in the

CRAWDAD data archive [17]. 24 individuals carried T-

mote sensor nodes for 3 months [18]. We use the motes’

ZigBee radios to detect co-location and collected the

participants’ Facebook “friends” as SRSNs.

2) The MIT Reality Mining (RM) trace [3]. 99 individuals

carried mobile phones using Bluetooth to detect co-

location. We use users’ phone contact lists as SRSNs.

3) The HOPE dataset [19] of the movements of RFID tags

carried by 767 attendees at the Hackers On Planet Earth

conference. Participants registered their interest in topics

and specific sessions before attending the conference,

which we use as an SRSN, and derive encounters from

the RFID readings. As the dataset is dense, and as most

of the timetable is taken up by hour-long talks, we merge

all contacts between pairs of nodes within one hour.

We believe that these traces capture a wide variety of

possible network scenarios. To avoid the effects of warm-up or

cool-down, where the recent/impending start/end of the trace



may affect node behaviour, we divide the traces into segments

and use the most central segment. As the SASSY trace lasts

over two months we split it into two 30-day segments and a 20

day segment and use the second segment. The nine-month RM

trace is divided into three 30-day periods, from the beginning,

middle and end of the trace respectively, and we use the middle

segment. For the HOPE trace we use the second day of three.

Table I shows the different properties of the overall traces

and the SRSNs. For the RM and HOPE traces the number of

edges, clustering coefficient and graph density are higher in

the encounter data than in the SRSN data. In other words, there

are longer paths in the SRSN data, which might make them

useful for building a trust mechanism. Nodes who are further

away in the SRSN network might be less trusted, despite their

frequent proximity in the trace network, reflecting the idea of

familiar strangers [20]: nodes who you encounter frequently

yet you do not know well.

A. Routing protocols

We analyse IRONMAN running over two different routing

protocols:

1) Epidemic [2]: Nodes forward messages to any encoun-

tered nodes that do not already have a copy.

2) Spray-and-Wait [21]: Messages have a finite number of

copies. Nodes give 50% of their copies of a message

to an encountered if it does not already have a copy.

Once nodes have only one copy left they only give

the message to the destination. We treat the number of

message copies as the number of nodes in the network,

following [22].

We simulate performance at five different levels of selfish-

ness following [23]: 0%, 50%, and 100%. Given Xu et al.’s

finding [24] that the altruism of high-degree nodes is most

important for mitigating the impact of selfishness, we choose

the highest degree nodes to be selfish, so as to maximise the

impact on our simulations.

B. Incentive mechanisms

We compare IRONMAN against two existing incentive

mechanisms, and modifications of these two mechanisms to

use SRSN information:

• IRONMAN: the mechanism outlined in Section III. We

use a value of 100 as the default local rating for SRSN

nodes, 50 for unknown nodes and 50 for the trust thresh-

old. We use 50 as the behavioural constant.

• YSS: the peer-to-peer reputation mechanism developed

by Yu, Singh and Sycara [12]. For the QoS parameter

required to measure nodes’ behaviour, we use the propor-

tion of messages exchanged altruistically, detected using

the same approach described in Section III-A. Where

possible we used the thresholds outlined in their paper:

the default opinion of nodes that are not known is 0.5,

which is the same value as the trust threshold. We use

their exponential approach to weighting opinions and

credibility of opinions.

• RELICS+S: A modified version of RELICS [16], as

representative of the state-of-the-art in incentive mech-

anisms for opportunistic networks. We attempt to use

parameters as described in their paper: 0.8 for the desired

delivery ratio threshold, 0.373mAh as the initial energy

level, one hour as the energy epoch, and 14.30mAh

for the increase in energy allowed during each epoch.

Nodes are given a starting rank of two, allowing them

to send two messages before being required to forward

on behalf of other nodes. Estimated delivery probabilities

are 1.0 if a node is the source of a message, and 0.5

otherwise. As RELICS, unlike the other mechanisms,

uses delivery receipts, we simulate these, but assume

that receipts have no forwarding cost, to maximise the

potential performance of RELICS. As RELICS does not

actively detect selfishness, we modified the mechanism to

treat nodes whose rating is below the initial value of two

as selfish, we call this RELICS+S.

• YSS+SRSN: Here we bootstrap the mechanism so that

nodes give members of their social network an opinion

of 1.0 (complete trust). We leave the default trust level for

other nodes as 0.5 and we change the trust mechanism so

that nodes only take into account the opinions of members

of their social network.

• As a control, we also consider performance when no

incentive mechanism is in place.

When a node is detected as selfish it ceases to behave

selfishly. The node may continue to be punished, however,

as other nodes need to detect its altruistic behaviour before

trusting it again.

C. Scenarios and metrics

We perform simulations under two different scenarios, to

highlight different features of the mechanisms:

1) a scenario with no resource constraints: nodes have

infinite buffer space and energy and messages have an

infinite time-to-live (TTL) value. There will be no false

positives of selfishness generated in this scenario, as

nodes will not drop messages due to full buffers.

2) finite buffers, energy and TTL, as listed in Table II.

We simulate ten runs per scenario, per incentive mecha-

nism, per trace. We calculate the delivery ratio (number of

messages delivered over messages sent) to see the difference

in performance across incentive mechanisms.

15% of each trace is used as a warm-up period, where

no messages are created or sent, but nodes may build up

reputation information. All message senders and destinations

are picked from an exponential distribution. For the SASSY

and RM traces, we exponentially distribute the message cre-

ation times throughout the day. As the HOPE trace only lasts

one day, we uniformly distribute the message creation times

throughout the day, to prevent messages from being created

with no time left in the trace for them to be sent.

As nodes in a real deployment would have memory limits,

we restrict the size of the history of recent encounters for



TABLE I
DATASET GRAPH STATISTICS

SASSY RM HOPE

Property SRSN Trace SRSN Trace SRSN Trace

Number of Vertices 25 25 97 87 414 410
Number of Edges 127 107 107 1186 67836 80183

Clustering Coefficient 0.748 0.555 0.255 0.618 0.834 0.976
Graph Density 0.406 0.342 0.023 0.313 0.792 0.954

IRONMAN and both YSS mechanisms to the most recent 1000

entries, in all scenarios.

To study the performance of the incentive mechanisms we

consider the negative impact of selfishness on the network,

using the following metrics:

1) Detection Time. The time that it takes a mechanism

to correctly detect selfish behaviour in a node. This is

the average time between a node choosing to behave

selfishly, and the time that a node is detected as selfish.

A mechanism with a low detection time will minimise

the impact selfish behaviour has on the network.

2) Detection Accuracy. The proportion of selfish nodes that

were correctly detected as selfish by a mechanism. An

ideal mechanism will have a low Detection Time and

high Detection Accuracy.

3) Selfishness Cost. The proportion of forwarded messages

(medium accesses) that were generated as a result of a

node creating a message while it was selfish. In some

respects this can be seen as the “goodput” of a network

with selfish nodes; a mechanism with a low Selfishness

Cost is effectively maximising the use of the network

by cooperative nodes.

We do not consider measuring the reputation changes as a

performance metric as in [12], as measuring impact of the

incentive mechanism on the performance of the network is

sufficient to demonstrate the merit of the mechanism.

TABLE II
SIMULATION ROUTING PARAMETERS

Parameter Value (SASSY/RM/HOPE)

TTL of messages 10 days / 2 days / 2 hours
Message frequency 1 per node per day
Simulation length 30 days / 30 days / 1 day

Message size (MB) 1
Buffer size (MB) 2000

Loss per second (mAh) 1.9×10−6

Time to send bundle (s) 34
Max energy (mAh) 1200

Energy per send (mAh) 0.4
Charge time (h) 8

V. RESULTS

We now examine the performance of the incentive mecha-

nisms in our simulations.

A. Infinite buffer, energy and TTL scenario

Figures 3(a)–3(c) show network performance (in terms of

delivery ratio) across the three traces. It can be seen that

IRONMAN performs the best of the evaluated mechanisms.

All the mechanisms have quite high detection times, due

to intermediate nodes infrequently encountering destination

nodes, but IRONMAN has a higher detection accuracy and

lower detection time than all the other mechanisms in the

SASSY and RM traces (Figures 4(a) and 4(b)). In the much

denser HOPE trace, even though the detection accuracy is

lower than the YSS-based mechanisms (Figure 4(c)), the

resulting delivery ratio (Figure 3(c)) is higher because both

YSS-based mechanisms discard more messages from selfish

nodes. Indeed, in this trace (Figure 3(c)), IRONMAN is not

only the sole mechanism that performs better than having no

detection mechanism at all, but it performs almost as well with

100% of nodes acting selfish as 0%.

In addition to the fastest and most accurate detection of

selfishness, IRONMAN has a lower or equivalent selfishness

cost than the other mechanisms (Figures 5(a)–5(c)). In other

words, IRONMAN is successful at ensuring that the network

is predominantly used by cooperating nodes.

When the YSS mechanism is modified to use social network

information, it performs the same, or better, than the original

mechanism (Figures 3(a)–3(c)). Figures 4(a)–4(c) show that

while YSS+SRSN has a slower detection time than YSS in

two of the traces, it has a higher delivery ratio, as it does not

drop as many messages from nodes perceived as selfish.

Note that to save space, we have omitted the results for

Spray-and-Wait routing, but the relative performance of the

mechanisms is the same as when using epidemic routing.

B. Resource-constrained scenario

As one might expect, when we consider the effects of

energy, buffer and TTL, we see that network performance

drops. In the RM and HOPE traces (Figures 6(b)–6(c)),

IRONMAN has the highest delivery ratios, while in the

SASSY trace (Figure 6(a)), all mechanisms perform similarly.

IRONMAN, however, detects a larger proportion of selfish

nodes (Figure 7(a)), has a lower detection time and a lower

selfishness cost (Figure 8(a)).

The relative detection time is not consistent across the

traces, however. YSS and YSS+SRSN have a lower detec-

tion time and higher detection accuracy in the HOPE trace

(Figure 7(c)) than IRONMAN; the density of the HOPE trace

means the low detection time of YSS and YSS+SRSN (a result

of the exponential weightings of ratings/opinions) causes both

mechanisms to detect a higher proportion of nodes than both

IRONMAN and RELICS+S, and results in a lower detection

time. As in the infinite scenario, however, IRONMAN still has

a higher delivery ratio (Figure 6(c)), despite the lower accuracy

and detection time.
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(a) All the mechanisms perform similarly. IRON-
MAN and RELICS+S are the best performing
when 100% of the nodes are selfish; however,
IRONMAN has less variance.
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(b) All the mechanisms perform similarly, with
YSS performing slightly better than the others at
high levels of selfishness.
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(c) IRONMAN performs equivalent to having no
selfish nodes in the network. Other mechanisms
detect selfishness but do not allow enough for-
warding: YSS and YSS+SRSN drop messages
from nodes they detect as selfish, and RELICS+S’s
energy monitor allows too little forwarding.

Fig. 3. Incentive mechanism performance in the three traces under epidemic routing, with infinite buffer, energy and TTL.
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(a) IRONMAN performs the best, with the highest
accuracy in the lowest time.
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(b) IRONMAN again performs best. YSS per-
forms better than YSS+SRSN as it does not trust
as many nodes implicitly.
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(c) YSS+SRSN and YSS perform best, with low
detection time and high accuracy. In spite of this,
IRONMAN still has the highest delivery ratio
(Figure 6(c)).

Fig. 4. Detection Accuracy against detection time, when 100% of nodes are selfish. Infinite buffer, energy and TTL.

In the HOPE trace, the delivery ratios of YSS and

YSS+SRSN do not change as selfishness in the network

increases, as these mechanisms are able to detect selfishness

and drop messages from those selfish nodes, thereby reducing

the overall performance of the network. YSS and YSS+SRSN

have similar Selfishness Cost results to IRONMAN however,

as YSS and YSS+SRSN do not allow nodes that have become

altruistic to forward many messages. If a group of nodes all

believe each other are selfish, they will drop the messages

created by the other nodes in the group. As the only way to

build up a good reputation is to forward messages for other

nodes, if nodes drop all incoming messages they can not build

up enough reputation to have their own messages forwarded.

The delivery ratio therefore remains low, and the Selfishness

Cost remains high, as is the case for YSS and YSS+SRSN in

the HOPE trace.

Again we see that RELICS+S does not perform as well as

IRONMAN, with a lower delivery ratio (Figures 6(a)–6(c)).

This is because the energy monitor does not allow for nodes

to forward sufficient messages. RELICS+S has a low detection

accuracy in all traces (Figures 7(a)–7(c)), and a high detection

time in all but the SASSY trace. This is because RELICS+S

does not detect selfishness well enough, a problem exacerbated

by the reduced forwarding opportunities. Figures 8(a)–8(c)

show that IRONMAN has the lowest selfishness cost in all

traces; IRONMAN is again the best at reducing the overall

impact of selfish nodes on the network.

Overall we see that IRONMAN can perform as well as

having no selfishness in the network, and SRSN-based mecha-

nisms are always the best (or equivalent to) the best performing

mechanism in the network. The exception is RELICS+S,

which continues to perform badly, because the time to adjust to

the correct energy level causes nodes to miss out on forwarding

opportunities.

Note that again for Spray-and-Wait, the relative performance

of the mechanisms is the same as for epidemic routing.
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(a) IRONMAN performs best, as its low detection
time ensures that more nodes are incentivised away
from selfishness before sending messages.
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(b) IRONMAN performs very well, ensuring al-
most all medium accesses are from altruistic
nodes.
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(c) All mechanisms perform similarly apart from
when all nodes in the network are selfish. The en-
ergy model in RELICS penalises altruistic nodes.

Fig. 5. Selfishness Cost under epidemic routing and infinite buffer, energy and message TTLs.

Delivery Ratio, Finite Resources, SASSY Trace
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(a) All mechanisms perform similarly, with IRON-
MAN performing slightly better at 100% selfish-
ness.
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(b) IRONMAN performs far better than the other
mechanisms, performing as well as having no
selfish nodes in the network.

Delivery Ratio, Finite Resources, HOPE Trace
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(c) The level of selfishness does not affect normal
delivery, however almost all the mechanisms apart
from IRONMAN do not perform well at 100%
selfishness.

Fig. 6. Incentive mechanism performance under epidemic routing, with finite buffer, energy and TTL.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced IRONMAN, an incentive mecha-

nism for opportunistic networks that uses pre-existing social-

network information to bootstrap trust relationships. Unlike

existing mechanisms, IRONMAN does not require an oracle

or infrastructure network, nor delivery receipts. We have

demonstrated that IRONMAN outperforms existing incentive

mechanisms, with accurate detection of selfish nodes in a

timely manner, and improved delivery performance in the

presence of selfishness. As a result, IRONMAN is able to max-

imise the proportion of the network that is used by cooperating

nodes. We have also shown that social-network information

can be used to improve existing incentive mechanisms in a

similar manner. We believe that this use of social-network

information will prove a fruitful topic for researchers in this

and similar areas. For instance, is it possible to use social-

network information to improve incentive mechanisms for

peer-to-peer or ad hoc networks?

In future work we intend to explore the interaction between

the application-layer social-network information that we ex-

ploit for our incentive mechanism, and the use of this infor-

mation in the application itself. Many opportunistic network

applications might themselves involve social networks, for

instance, mobile social networks, crowdsourcing, or participa-

tory sensing. Might it be useful to expose trust relationships

from the routing layer to the application layer, or vice versa?

Or could application-layer detection of misbehaving nodes,

such as anomalous crowdsourced data, be used to inform

routing decisions? Such further study will require both routing

protocol development and application deployment.

We intend to analyse the theoretical reason behind IRON-

MAN’s performance. We also wish to refine our models of

social network behaviour. We currently assume that members

of the same social network will be more likely to trust each

other. But if behaviour is contagious across a social network,

as proposed by Fowler and Christakis [25], then perhaps selfish

behaviour might also propagate, leading to new incentive

challenges.
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