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Abstract

In this paper we attempt to gain an understanding of the behaviour of users in a multipoint, interactive
communication scenario. In particular, we wish to understand the dynamics of user participation at a
session level. We present wide-area session-level traces of the popular multiplayer networked games
Quake and Half-Life. These traces were gathered by regularly polling 2256 game servers located all
over the Internet, and querying the number of players present at each server and how long they had
been playing. We analyse three specific features of the data: the number of players in a game, the
interarrival times between players and the length of a player’s session. We find significant time-of-
day and network externality effects in the number of players. Player duration times fit an exponential
distribution, while interarrival times fit a heavy-tailed distribution. The implications of our findings are
discussed in the context of provisioning and charging for network quality of service for multipoint and
multicast transmission. This work is ongoing.

1 Introduction

In spite of being an active research area for over a decade, multicast has yet to see large-scale deployment.
This may be due to a number of factors, such as the lack of compelling multicast applications, or the lack
of a method for multicast service providers to charge for a multicast service [10]. We are in the process of
developing a pricing scheme which allows efficient and predictable charging for multicast (initial details of
this scheme are described in [15]). One problemwith attempting to charge for multiple-source applications,
however, is the need for predictable prices. If users share the cost of a multiuser transmission, and the
number of users changes as users join and leave the session, the price paid per user will also change.
We therefore need to understand how users behave in multiuser scenarios if we are to engineer pricing
schemes that will provide stable and predictable prices. Models for user behaviour are also useful in
designing pricing schemes for maximising objectives such as aggregate utility or network utilisation, and
for understanding and providing for network Quality of Service (QoS).

In a somewhat “chicken and egg” situation, the limited deployment of multicast also means that there
are few sources of data from which a model for user behaviour can be determined. A feature of our
intended pricing scheme is that it should be independent of the underlying network protocols. Thus, there
is no reason why a model for multipoint user behaviour need be determined from IP multicast sessions.
From an end-user viewpoint, there is no functional difference between an IP multicast session and several
unicast streams, and so user behaviour should be similar in both of these multipoint situations. There may
be a difference in cost and this may be used as an incentive for the use of multicast.

With the removal of the absolute requirement for native IP multicast sessions in order to provide multi-
point communications, the problem of creating a model for multipoint behaviour becomes more tractable.
There are many existing, and popular, multipoint applications that use unicast routing, for example, online
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chat applications such as Internet Relay Chat (IRC), or multiuser networked games such as Quake. We
have chosen to examine the latter to determine user behaviour, and thus to determine the requirements for
pricing this behaviour and provisioning network resources.

This paper is structured as follows. We discuss our motivation for choosing games as an application
and note previous work in Section 2. Section 3 describes the methodology used for gathering data and
summarises our results. Sections 4, 5 and 6 analyse three particular aspects of the data, namely session
membership, session duration and user interarrival times respectively. Finally, Section 7 concludes the
paper and discusses possibilities for future research.

2 Motivation

Multiplayer networked games are contributing to an increasingly large proportion of network traffic [22].
Such network usage is likely to increase further now that consoles such as the Sega Dreamcast and Sony
Playstation 2 feature Ethernet and modem connections. Games players are already willing to pay extra
to get an improvement in their playing experience, as evidenced by specialist gaming hardware such as
joysticks, mice, mousepads and even furniture. Game publishers have proposed charging players per-game
via network delivery, rather than the current practice of charging a one-off fee for the software [25], or by
charging a fee per game with the opportunity for players to win money or prizes [29]. More interesting,
from a networking point of view, is the existence of modems marketed as being specially optimised for
games [1], and software designed to determine network characteristics of potential games servers such as
delay [13]. These developments indicate that games players are interested in network QoS, and would be
willing to pay for the ability to improve it.

The games that we study here are of the type commonly referred to as FPS (First Person Shooter)
games. Players connect to a central server using unicast UDP (or occasionally TCP) flows. The maximum
number of players that can connect to a server is set arbitrarily by the server administrator, according to
the amount of network traffic and CPU time they wish the game server to consume (for the games studied
here, this figure is typically set to 16 or 32 players). Players’ actions are transmitted first to the central
server, which calculates and maintains the overall state of the game and then transmits this state back to
the players. The general objective of most of these games is to explore a common virtual world and kill as
many of the other players as possible.

2.1 Previous work

Multicast sessions on the MBone are studied by Almeroth and Ammar [2]; these sessions are all single-
source and perhaps do not reflect the different dynamics of multiple-source applications. There is a long
history of network and Internet traffic analysis (see [24] for a survey). The majority of this, however, looks
at packet-level and network-level traces. In particular, Bangun et al. [3] and Borella [5] both study the
traffic patterns of multiplayer games, but do not examine session-level user dynamics, and limit the studies
to local area network traffic only. Although there may be interesting relationships between the data at the
packet and session levels, for instance in terms of self-similarity, we do not consider these in this study, but
leave them for possible future work.

3 Methodology

Almeroth and Ammar [2] show that the monitoring of IP multicast sessions is possible through joining a
session and then watching other session members join and leave. This is impractical for networked games,
however, since to join a game implies participation. As most people are only capable of playing one game
at a time, and only for a certain number of hours a day, this limits the scope of any data collection. Although
it is possible to simulate a user through a script or program, such “bots” are frowned upon by many game
server operators and generally lead to the user in question being barred from that server. Furthermore, there
is a data integrity problem in that user behaviour might depend on the number of players in a game, and so
by joining a game to monitor it, we might affect the results.
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Some game servers offer a querying mechanism, whereby specific variables about game status can be
retrieved. Since joining and continuously monitoring games seemed impractical, polling and querying
games servers at regular intervals was determined to be the next best option. By polling servers and
determining the number of players at each poll, an approximation of user behaviour can be obtained. Many
networked games also allow the querying of such variables as players’ nicknames and the amount of time
that they have been playing, and so the duration of each users’ session can also be estimated. The accuracy
of this method depends on the frequency of polls. If the polls are too far apart, then any users who join and
leave between polls will be missed. If the polls are too frequent, the amount of network traffic might have
an effect on the servers and perhaps affect user behaviour.

Data were collected using the QStat tool [27], which is a program designed to display the status of
games servers, and which supports a large number of online multiplayer games. Of these games, the game
Half-Life [14] was determined to be the most popular game, and was also one of the games which supports
the reporting of a player’s connection time, and so it was chosen to concentrate on players of this game.

A list of 2193 IP address/port pairs1 of machines running the Half-Life daemon was obtained from
a “master server” at half-life.west.won.net. This list is composed from submissions by server
administrators and/or automatic registration by servers (depending on the game). This list may also be
queried by users through the application itself, or through the use of some of the aforementioned programs
for determining the closest or quickest-responding game server.

Servers were polled using QStat at regular intervals (Figure 1). At each poll, the number of players,
their chosen nicknames and the number of seconds that each player had been connected were retrieved
(example output from QStat is shown in Figure 2). If a response was not received from a server, group
membership was assumed to be the same as at the previous successful poll. Since polling took place at the
application level, we could not detect such events as unsuccessful join attempts, as these do not register
in the game. We were also limited in that polling takes place from a central machine at UCL, and so any
network failures that existed solely between UCL and the game servers (but not between the game server
and the players) would affect our results.

SERVER
GAMEPOLLING

USER USER

USERUSER

REPLY (2 UDP pkts) <−

QUERY (2 UDP pkts) −>

(PlayerName, ConnectTime)

MACHINE

Figure 1: Data gathering setup

Servers Game Frequency Duration
O-I 2193 Half-Life 30min 1 week
O-II 35 Half-Life 5min 3 days
O-III 22 Quake 5min 1 week
O-IV 3 Half-Life 5min 2 months
O-V 3 Quake III Arena 5min 2 months

Table 1: Observations

1It is not uncommon for a single machine to run several servers on different ports; of our list of 2193 servers, there were 1725
unique IP addresses.
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NAME: Merlin TIME: 5710
NAME: [F.u.T]The_LAW TIME: 5728
NAME: MagNETo [FH] TIME: 2176
NAME: TomiN TIME: 2409
NAME: [DEM] Guybrush T. TIME: 8575
NAME: [.HoF.]Ben Kenobi TIME: 1177
NAME: [Thug]Tosh TIME: 142
NAME: TDMT_Silvan TIME: 1540
NAME: Gulzak TIME: 874
NAME: [DBK]HannibalTC TIME: 954
NAME: [STANDARD] Kill Demon TIME: 1085
NAME: -=Phoenix=- TIME: 5593

Figure 2: Example QStat output

Several sets of observations were taken; the differences between these, and the labels that are used in
this paper to refer to them, are shown in Table 1. The first set O-I used the master list of Half-Life servers.
From this, the 35 most popular servers were selected for more detailed observation over one weekend
in O-II.

Set O-III used 22Quake servers, the addresses of which were also obtained by querying a master server.
Quake is an older game, introduced in 1996, which is why the number of servers is so much lower than
Half-Life, which first went on sale in 1998. Quake, however, is one of the few games to allow the querying
of players’ IP addresses, which may be useful for determining the network topologies and spatial analysis
of games. The sourcecode for the game is freely available, so this set of observations may prove useful for
future work.

The last pair of observations, O-IV and O-V, come from two sets of servers which Microsoft Research
have been running at their site in Cambridge, UK. Using a public list of servers proved to have difficulties,
since some of the IP addresses on the list were dynamically allocated (for instance, users running game
servers on dial-up machines). It would appear that the master list does not update frequently enough to
eliminate these, and so many polls would end up targeting machines which were no longer running the
game server. Of the original list of 2193 addresses, we found that 265 of these were never running the
server during the course of our polls. The game used in O-V, Quake III Arena, does not allow the querying
of player duration. For this set of data we assume that each player joined at the time of the poll at which
they are first noticed; this figure thus has an inaccuracy of up to two poll periods.

3.1 Summary of observations

We observed a total of 1,757,539 individual sessions (i.e., individual users joining and then leaving a
game). Table 2 shows some of the overall aspects of the data. We were interested in examining three
specific features: the number of participants in a game, the interarrival time between participants, and how
long a player remained in a game.

4 Session membership

Figure 3(a) shows the total number of players for all the servers in O-I and O-III to O-V, aggregated to a
one-week period. Figure 3(b) shows the number of players for one server from O-IV, again scaled to one
week. It can be seen that the number of participants in a game exhibits strong time-of-day effects, peaking
in the middle of the day. The strong sinusoidal pattern in the correlograms in Figures 3(c) and 3(d) also
indicates seasonal variation.

It can be seen from Figure 3(a) that mid-Tuesday is an outlier, with an unusually low number of players.
This might have been due, for instance, to a break in network connectivity. This outlier was removed by
replacing the data with the average of the samples 24 hours before and 24 hours after.
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Total joins Average
joins/server/hr

Median
interarrival
(sec)

Max interar-
rival (sec)

Median du-
ration (sec)

Max dura-
tion (sec)

O-I 1510445 4.65 225 246171 1576 3165999
O-II 69961 27.76 70 17309 1098 66738
O-III 37037 10.01 118 51706 618 410699
O-IV 23559 4.19 115 77843 612 2614737
O-V 5872 1.04 300 76800 901 403201

Table 2: Summary of results
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Figure 3: Number of users
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Since the time-of-day effect is so clearly evident, it is possible to do a simple seasonal decomposition
by subtracting each observation from the mean value for all the observations taken at that time of day [7].
The results of this are shown in Figure 4, where the higher solid line represents the time-of-day effect, the
lower solid line the remainder, and the dashed line the observed data. Three days are higher than the others;
these, as one might expect, are Friday to Sunday.

Seasonal decomposition of members
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Figure 4: Seasonal decomposition of smoothed membership data

4.1 Network externalities

It is accepted that the value of a group activity to an individual participant may be related to the number
of participants in that group. This has been quantified conjecturally by engineers as Metcalfe’s Law (the
value of a network is proportional to n2, where n is the number of users [23]), or more recently as the
Group-Forming Law (the value of the Internet is proportional to 2 n [28]). Economists, however, generally
refer to these effects as “positive consumption” or “network externalities”: for example, Katz and Shapiro
define network externalities as “products for which the utility that a user derives from consumption of the
good increases with the number of other agents consuming the good.” [18] Network externalities have most
commonly been studied in terms of standardisation and compatibility (e.g., the take-up and acceptance of
fax machines [11]), although Henriet and Moulin [16] present a cost allocation scheme for networks where
users share costs according to the network externalities that are accrued.

One would expect that multiplayer games would also exhibit network externalities. The purpose of a
networked multiplayer game is to participate with other people; if a user wishes to play against electronic
opponents there would be less need for the networked aspect of the game (unless, for example, a user
wished to play against a far more powerful computer such as the famous chess matches between Kasparov
and IBM machines). In general, however, it is reasonable to assume that a given participant in a networked
game is taking part because they wish to interact with other remote, human users, and, therefore, that their
utility is derived, to some extent, from the existence and number of these other users.

Figure 5 shows the temporal ACF (autocorrelation function) of the corrected data from Figure 4, after
removing the time-of-day effect; this shows the degree to which the number of players in a subsequent
time period depends on the session membership in the previous period. It can be seen that the level of
autocorrelation is high, even for a large number of time periods. Thus, as expected, there appear to be
some network externality effects.

Having observed the time-of-day and network externality effects, we analysed the session membership
data using time-series analysis. ARIMA (Autoregressive Integrated Moving Average) models, introduced
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Figure 5: Temporal autocorrelation in number of players

by Box and Jenkins [6] are a popular means of modelling time series data. An autoregressive process is
defined as a serially dependent process whereby elements in a time series can be described in terms of
previous elements:

Xt � φ1Xt�1�φ2Xt�2�φ3Xt�3� ���� ε (1)

A moving average process is where each element in a time series is affected by past errors, independent
of the autoregressive process:

Xt � µ� εt �θ1εt�1�θ2εt�2�θ3εt�3� ��� (2)

An ARIMA model incorporates both the autoregressive and moving average processes. Such models
are referred to as ARIMA�p�d�q�, where p is the autoregressive parameter, d the number of differencing
passes required to make the input series stationary, and q the moving average parameter. If the time series
has a seasonal component, additional seasonal parameters are required, and the model is referred to as an
ARIMA�p�d�q�� �P�D�Q�s model, where P, D and Q represent the ARIMA parameters of the seasonal
component, and s is the period of the seasonality.

For the aggregate session membership data from Figure 4, there is little to choose between a �1�1�1��
�0�1�1�48 and a �2�1�1�� �0�1�1�48 model (Figure 6 shows the diagnostic output for the latter). Applying
these two models to individual servers’ data, however, showed that a �2�1�1�� �0�1�1� 48 model is the
most appropriate. Figure 7 shows the diagnostics for one server; the Box-Pierce statistic indicates a high
goodness of fit.

A �2�1�1�� �0�1�1�48 model incorporates both network externalities, since the autoregressive compo-
nent means that the number of players up to an hour prior to a player joining has an effect on a player’s
decision to join, and also includes the time-of-day effect through the seasonal �0�1�1� 48 component.

Proportional fairness has become a popular metric for allocating bandwidth between flows on a con-
gested link [19]. This relies on the assumption of users having logarithmic utility functions. It is unclear,
however, whether this same unicast logarithmic utility function should be assumed for a multicast or mul-
tipoint transmission. Chiu [8] shows that proportional fairness may produce an “unfair” outcome in the
multicast case, and proposes a weighted proportionally fair solution, where multicast flows receive a band-
width share weighted according to the aggregate utility of the downstream receivers. Legout et al. [20]
suggest that this bandwidth share might relate either linearly or logarithmically to the number of down-
stream receivers. The data presented here supports the latter suggestion, since they imply that it might be
more appropriate to assume individual utility functions which incorporate network externalities.
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Figure 6: ARIMA diagnostics and cumulative periodogram for �2�1�1�� �0�1�1� 48 model on data from
Figure 4
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Figure 7: ARIMA diagnostics and cumulative periodogram for �2�1�1���0�1�1� 48 model for single server

Time-of-day pricing is commonly used for pricing utilities such as electricity and telephone service,
and has been proposed as a simple, if suboptimal, method for pricing Internet traffic [21]. The time-of-day
effects observed here mean that this might be appropriate on a per-application basis, at least for games.
This might also have implications for network provisioning, whereby a network designed for games would
want to be able to deal with the peaks.

5 User duration

Game servers tend to run continuously, with users joining and leaving as they wish. As such it is not
meaningful to discuss the overall session duration, i.e., a whole game. Instead we examine the duration
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of each individual session, i.e., a user’s game. Figure 8 shows the duration of users’ individual sessions
from O-II: it can be seen that these durations vary quite widely, and that many game durations are lower
than our polling period of five minutes. This might be due to dropped connections, or users browsing
games by starting a session to see what is going on and deciding that a particular game is not to their liking.
At the other end of the spectrum, there are several long game durations of over 24 hours. These might be
“hardcore” gamers, automated players/bots or users who have mistakenly left their connections active.

In Figure 9 we fit the user duration data for two individual servers to a set of randomly generated
exponentially-distributed data. The Quantile-Quantile plots show that this is an appropriate model. This
agrees with the findings for multicast sessions in [2]. It is also known that some single-user applications,
such as voice telephone calls [4] fit an exponential distribution.

Since we had already observed network externality effects in the number of players, we expected to find
a correlation between the duration of a player’s session and the number of players in that game; a gamewith
more players might be likely to lead to players enjoying the game more, which should lead to them staying
longer. Surprisingly, there appears to be no evidence for this. Figure 10(a) shows a boxplot of the number
of players at the start of a player’s session against the duration of their session. There does not seem to be a
correlation, and the median duration is relatively constant irrespective of the number of players. Comparing
the duration to the average number of players over the first hour of a session (Figure 10(b)) showed a slight
correlation, but this was insignificant. This might indicate that the absolute number of players in a session
is not necessarily a determinant of when a player decides to leave a session; it may be the behaviour or skill
of the specific players that is more important, or a completely unrelated factor.

6 Interarrival times

Figure 11 shows the interarrival times between players for one server. As for duration, there is large
variation. Unlike the duration data, interarrival times do not appear to fit an exponential distribution, as
shown in Figure 12.

Interarrival times between users for single-user applications have been found to fit a Poisson distribu-
tion [12, 26]. This is unlikely to be the case for multiuser applications, however, where the presence of
other users may alter user behaviour. Borella [5] finds that for games, packet interarrival times are highly
correlated. Figure 13 shows that this is also true for player interarrivals; there is significant autocorrelation
at short lags, which implies that the arrival of some users will lead to others arriving. Thus, the interarrivals
do not fit the independent arrivals of the Poisson distribution.

Heavy-tailed distributions have been observed for Internet usage behaviour, for example in WorldWide
Web usage [9] and aggregate Ethernet traffic [30]. One method for visualising a heavy-tailed distribution
is a log-log complementary distribution (LLCD) plot, where the complementary cumulative distribution
is plotted on logarithmic axes. Linear behaviour in an LLCD plot indicates a heavy-tailed distribution.
Figure 14(a) shows such a plot for the interarrival times, and linear behaviour can be observed for the
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Figure 9: Fitting an exponential distribution to user duration data

larger observations (Figure 14(b)).
A more rigorous test for heavy-tailed distributions is the Hill estimator [17]. A distribution of variable

X is heavy-tailed if
P�X � x�� x�α �as x� ∞� 0� α � 2� (3)

The Hill estimator can be used to calculate α

α̂n �

�
1�k

i�k�1

∑
i�0

�logX
�n�i�� logX�n�k��

�
�1

(4)

where n is the number of the observations, and k indicates how many of the largest observations have been
used to calculate α̂n. Figure 15 shows that α̂ is approximately 1.15.

Comparing the interarrival times to the number of players in a session shows some evidence of an
inversely proportional relationship (Figure 16); as the number of players in a session increases, the inter-
arrival times decrease. This supports the hypothesis that the number of players is a determinant in other
players’ decisions to join a session.

The high variation in user duration and interarrival times have several implications for price stability
and provisioning if the members of a multicast group are to share the overall cost of a session amongst
themselves. The autocorrelation in the number of players and interarrival times means that if the users are
sharing the costs of a session, this cost will snowball; new users joining will be followed by other users
joining (and users will join faster as the number of users increases), leading to rapid decreases in the cost
per user, and vice versa for when users leave. This could be rectified, for example, by only changing the
price for each user on a periodic basis rather than with each join or leave. The autocorrelation seems to
exist for large lags, however, which means that the periods of price reevaluation would also have to be
large, and this could impede the efficiency of any pricing scheme.
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Figure 10: Number of players versus duration of session
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Cost sharing may also change the behaviour of players, since we have observed that the number of
players in a session is not a large factor in the utility received from a game. Once network pricing or QoS
are a feature of networks, then users will need to choose between network flows depending on the value
that they receive from each application; in other words, they will attempt to maximise their utility given
their individual budgets. The price of a session thus becomes a factor in user behaviour, and if the cost of a
session is shared amongst session members, then the number of players in a session will become a factor,
since it will be a determinant in the price of the session. Additionally, the number of users in a session
might affect the QoS, which would become a further factor for users’ behaviour.
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Figure 12: Fitting an exponential distribution to interarrival times
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Figure 13: ACF of interarrival times

7 Conclusions and future work

There has been little study of session-level user behaviour in large-scale multiple-source scenarios. In
this paper we have presented statistical analysis of several session-level traces of popular multiplayer net-
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Figure 14: Log-log complementary plots of interarrival times
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Figure 15: Hill estimator for interarrival times

worked games. We have found that the number of players exhibits strong time-of-day and network exter-
nality effects, and we have fitted an appropriate ARIMA model. Players’ duration times fit an exponential
distribution, while interarrival times fit a heavy-tailed distribution. The number of players in a session
appears to have a greater effect on players’ decisions to join a session rather than leave. In many respects
we have observed similar behaviour to that seen for multicast applications, despite the unicast nature of
these games. This implies that in the absence of appropriate multicast data, unicast multipoint applications
are an appropriate substitute. We have discussed how these results could impact potential multicast pricing
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Figure 16: Number of players versus interarrival time

policies and network provisioning.
Networking research into multiplayer games is still at an early stage, and there is much future work

that needs to be carried out. Understanding user behaviour is but one stage in creating appropriate pricing
policies. It does not, for example, help us explain what users desire or require. Future work will investigate
the QoS requirements for networked games, in particular, concentrating on how the requirements change
depending on the composition of a session and group.

We also intend to look at packet-level traffic statistics. Some of the results presented here have been
similar to those of previous packet-level games studies, and it will be interesting to conduct simultane-
ous analysis at the packet and session levels, to determine whether there is any relationship between the
behaviour at both levels. This is important, for example, if QoS provisioning is to take place through con-
gestion pricing, i.e., charging users for the network congestion that they cause. Unfortunately, most of the
game server operators and ISPs that we have spoken to do not log many of the appropriate statistics. Thus,
we are now running our own games servers in order to collect packet-level data. Running our own servers
presents many opportunities for further work. Since we can log the exact times when players connect and
leave to the server, we can better estimate the inaccuracy of the polling method that we have used here. We
are also using these games servers for experimental rather than correlational study; for example changing
such variables as network delay in order to determine the effects on user behaviour.

The study presented here has only looked at one type of game, the FPS. Althoughwe examine two of the
most popular games of this genre, it is not necessarily true that these results will hold for other FPS games
and this should be further examined. Moreover, other types of games, for instance MMORPGs (Massively
Multiplayer Online Role-Playing Games) such as Everquest, are likely to exhibit different user behaviour,
since the MMORPG can be slightly slower paced, and can involve thousands of users connecting to a single
server, rather than the large number of small groups in FPS games.
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