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Abstract—Opportunistic networking — forwarding messages
in a disconnected mobile ad hoc network via any encountered
nodes — offers a new mechanism for exploiting the
mobile devices that many users already carry. Forwarding
messages in such a network often involves the use of
social network routing— sending messages via nodes in the
sender or recipient’s social network. Simple social network
routing, however, may broadcast these social networks, which
introduces privacy concerns.

This paper introduces two methods for enhancing privacy
in social network routing by obfuscating the social network
graphs used to inform routing decisions. We evaluate these
methods using two real-world datasets, and find that it is
possible to obfuscate the social network information without
leading to a significant decrease in routing performance.

I. INTRODUCTION

Mobile devices, such as mobile phones, are commonly

carried by people. While most current communication

using such devices takes place through infrastructure

such as licensed GSM or UMTS networks, it may be

possible to exploit these devices in an ad hoc manner.

By directly exchanging messages between devices when in

physical proximity, an opportunistic network may thus be

formed; messages are sent via intermediary devices, in a

disconnected store-and-forward architecture.

One main challenge in opportunistic networks is routing:

given episodic connectivity based on people’s real-world

movements, how can we send messages from source to

destination? One approach is epidemic routing — flooding

the network with messages, by sending messages during

each and every encounter [14]. This approach ensures that,

if a path exists between source and destination, the message

will be delivered along this path as quickly as possible. But

sending large numbers of redundant messages is wasteful,

and will rapidly drain the mobile devices’ batteries.

To reduce message delivery cost, messages should be

selectively forwarded during encounters between members

of the opportunistic network. What is a good method of

determining whether a message should be forwarded?

One approach is social network routing. Based on the

assumption that encounters between mobile devices are more

likely to occur between people in the same social network

— i.e., between people who are connected to each other,

perhaps through friendship or co-location, than between

random strangers — messages may be forwarded selectively

only within the sender’s social network.

But one problem with social network routing is

that of privacy. In social network routing schemes,

intermediate nodes forward messages based on whether

the encountered node is in the original sender’s social

network. Social network routing may involve broadcasting

social network information in the clear (not encrypted end-

to-end because the information is used by intermediate

nodes for routing), creating potential privacy concerns. For

example, opportunistic network users might wish to hide

an embarrassing friend. Or a user may accept the use of

social network information for routing, but not the whole

network being world-viewable; it is one thing for a curious

person to be able to infer some of the social network

based on forwarded messages, but another to broadcast the

potentially-sensitive information.

Our goal is to mitigate privacy concerns while retaining

the advantages of social network routing. In this paper, we:

• Analyse the potential privacy threats implicit in social

network routing, to present an attack tree.

• Investigate the effect on routing performance of

obfuscating social network graphs.

• Investigate hiding social network information using

one-way hashing, via the Bloom filter data structure.

Our contributions are to provide what is, to our

knowledge, the first analysis of threats in social network

routing, and the first schemes to attempt to enhance privacy

in social network routing without key management.

We discuss related work in the next section, and present

a threat analysis in Section III. We discuss our two social

network routing schemes in Section IV. Section V evaluates

these schemes using two real-world traces, and finally in

Section VI we conclude and discuss ongoing work.

II. RELATED WORK

Opportunistic networks [11] have become increasingly

popular and relevant as more people carry mobile devices.

Essentially, an opportunistic network is a disconnected

MANET (mobile ad hoc network), where mobile nodes

can send messages in the absence of any knowledge about



network topology. Nodes opportunistically make use of any

other nodes that they encounter, as long as these encountered

nodes are likely to help the message reach its destination.

The performance of an opportunistic network depends

on accurately determining which encountered nodes will

be useful in forwarding. Many forwarding schemes have

been proposed that leverage the structure of nodes’ social

networks to do so [5], [9]; if we know that a node is in

the same social network as a message’s destination, then

it may make sense to use that node for forwarding. In

this paper, we refer to this class of opportunistic network

forwarding protocols as social network routing, and the class

of protocols which broadcast social network information in

the clear as simple social network routing.

If nodes are to trust their data with any other nodes that

they encounter, privacy is paramount. Existing proposals for

addressing privacy in opportunistic networks, e.g., [4], [13],

use key management to divide network users into groups and

restrict access accordingly. Key distribution and management

in such schemes is very difficult in an ad hoc environment,

however, and may impede the very feature which makes

opportunistic networking so appealing — the fact that nodes

may forward to any node that they encounter. Moreover,

even within these systems, group members can observe the

routing tables of all other members, so many of the attacks

that we describe in this paper are still possible.

Aad et al. [1] present methods to improve anonymity

within an ad hoc network. These include using Bloom filters

to compress and obscure a packet’s routing list, and a

technique for combining multicast and onion routing. They,

however, assume global routing information is available for

the network, which we do not; and they do not evaluate

performance using simulations, as we do here.

III. THREAT ANALYSIS

Before we can enhance privacy in social network routing,

we need to understand the threats against privacy that may

occur when using such routing schemes. We choose to

employ attack trees, as introduced by Schneier [12].

An attack tree is a type of and–or tree, used to enumerate

attacks against a system. The root node of the tree is the

overall attack goal, while nodes within the tree are subgoals.

The children of a particular node are the steps required to

achieve that node’s subgoal. By constructing such a tree from

the root node (overall goal) downwards, we may enumerate

a structured threat analysis for attacks against a system.

Following is a preliminary attack tree for privacy threats

against users of opportunistic networks employing social

network routing. Our attack tree may not be complete; future

work is to further increase the rigour of our threat analysis.

A. Goal: Discover structural information about the social

network graph.

1) Learn whether a friendship link exists (or does not

exist) between two users. OR

a) Discover communication (or lack of) between the

users. OR

i) Eavesdrop a message as it is forwarded user-

to-user, from source to final destination (or

any intermediary). OR

A) In simple social network routing, a

message traced along such a path reveals

social network links (or lack of) – because

messages are forwarded if and only

friendship links exist. Friendship links are

the path traversed by the message.

ii) Extract source/destination from an

intercepted message to an intermediary.

b) Extract friendship links from an intercepted

message to an intermediary.

2) Learn how many friendship links a particular user has.

a) Extract friendship links from an intercepted

message to an intermediary.

B. Goal: Discover whether two individuals have been in

proximity within a certain timeframe.

1) Follow one or both individuals for the time in question.

OR

2) Infer proximity by sending a specially crafted

message, and making inferences based on where the

message is observed within the network. OR

a) Example: has Alice from New York recently

met Bob from Los Angeles? To find out, an

attacker Mallory in New York can inject a

message addressed for colluding attacker Trudy

in Los Angeles into the system, with Alice and

Bob only as requested intermediaries. If Trudy

receives Mallory’s message, Mallory and Trudy

have learned that Alice and Bob have met within

the lifetime of this malicious message.

3) Infer proximity by noting that messages are not

forwarded twice. OR

a) Example: if a message is not forwarded to a

node known to be a requested intermediary,

the message must already have been forwarded

earlier. An attacker can infer that the nodes were

in proximity before this time. This is a passive

version of 2.

4) Wait in a common place and listen for message traffic.

Message exchange, or message headers, may reveal

the colocation of individuals to an attacker.

C. Goal: De-anonymise a social network to discover the

presence of individuals within the network.

1) Follow individuals, and tie their network identifiers to

their actual identities. OR

2) Infer identities from known portions of the social

network.



a) Example: if five people are known to be mutual

friends, and four are deanonymised with a fifth

mysterious node, an attacker can infer that this

unknown node is the last member of the clique.

IV. PRIVACY-ENHANCED SOCIAL NETWORK ROUTING

In simple social network routing schemes, the sender’s

social network is transmitted in the clear along with each

message. Intermediate forwarding nodes are able to read the

sender’s full social network in plaintext, facilitating most of

the threats outlined in Section III.

Encrypting the social network information end-to-end can

ensure privacy, but we would then lose the advantages

of social network routing: intermediate forwarding nodes

would no longer be able to exploit the sender’s social

network information to inform their routing decisions.

Inspired by [2], we attempt to target the social network

routing privacy threats by obfuscating a sender’s social

network. We now introduce two schemes for doing so.

A. Statisticulated Social Network Routing

Named for a portmanteau of statistical manipulation1,

our first scheme is Statisticulated Social Network Routing

(SSNR). For each message transmitted, the sender makes

changes to the message’s copy of their social network —

adding or removing nodes. While the social network sent

along with the message will be based to some extent on the

sender’s true social network, and so still useful for social

network routing, the social network has been modified by

the addition or removal of nodes. Any node seeing the social

network sent along with the message now cannot say with

certainty whether a particular node is truly part of, or absent

from, the sender’s social network.

In practice, the sender may choose the level of social

network manipulation on a per-message basis. In our

evaluation, however, we examine routing performance for

a particular choice of modification degree of the sender’s

social network. For instance, a +50% modification of the

social network would meant that the sender adds 50% more

nodes to their social network before message transmission.

We thus determine average performance for a particular

degree of social network modification. For simplicity, we

do not evaluate routing performance while simultaneously

adding and removing nodes.

It would still be possible for a malicious person to average

over the social network information included with many

messages of one particular sender. But we have created

much more work for this malicious person: many generated

messages must be intercepted, rather than just one single

message to reveal all. Since the nodes in the opportunistic

network are mobile, and messages are only transmitted when

1Huff coins the term statisticulation in [8]: “Misinforming people by the
use of statistical material might be called statistical manipulation; in a word
(though not a very good one), statisticulation.”

nodes encounter one another, a malicious person would

likely have to physically follow a node for some length of

time before being able to intercept multiple messages from

the same source; a task considerably more challenging than

eavesdropping a single message.

B. Obfuscated Social Network Routing

Our second scheme, Obfuscated Social Network Routing

(OSNR), embeds the social network information within a

Bloom filter. A Bloom filter [3] is a data structure allowing

probabilistic querying for set membership. False negatives

are not possible, but false positives are — with increasing

probability as the Bloom filter becomes more full. After

inserting each node in the sender’s social network into a

Bloom filter, we may regard the Bloom filter as a non-

trivially-reversible hash of this social network information.

To make a rainbow table attack2 impractical, we create

a per-message random salt, which is sent along with the

message in the clear. The elements inserted into the Bloom

filter are a concatenation of this random salt with a unique

node identifier (any unique identifier would suffice, such as

MAC address, IMEI, or even some higher-level identifier

tied to the user rather than the device).

Given the Bloom filter, the random salt and an

encountered node’s identifier, it is easy to make a routing

decision: query for set membership of the random salt

concatenated with the node identifier. A positive result —

guaranteed if the node is inside the sender’s social network,

but possible with low probability if not — means to forward

the message, since the node is most likely in the sender’s

social network. A negative result means that the node is not

in the sender’s social network, and so not to forward.

Since we do not employ encryption (given the lack of a

PKI), it is still perhaps possible for an attacker to reverse

engineer the Bloom filter by brute force — the attacker can

iterate through all the node identifiers, concatenating each

with the plaintext salt and testing for a Bloom filter match.

This is orders of magnitude more work than a rainbow table

lookup, however, and must be repeated for every message.

The Bloom filter (with salt) does not provide perfect security,

but does make the attacker’s job much harder.

It is possible to combine OSNR and SSNR: the social

network may be modified as in SSNR prior to hashing in

a Bloom filter as in OSNR. We refer to this as SSNR-OSNR.

We note that Bloom filters are fixed-width — a convenient

property for scalability. In pure SSNR, packet headers may

grow arbitrarily large as the sender’s social network grows;

this is potentially a problem for sender with very large social

networks (and compounded if these networks grow further

using SSNR). OSNR, and SSNR-OSNR, have no such scaling

problem due to the fixed size of the Bloom filter.

2A rainbow table is a precomputed lookup table of hash value to input.



V. EVALUATION AND RESULTS

We now evaluate our two schemes to determine their

impact on opportunistic network performance. We use trace-

driven simulation with two real-world datasets.

A. Datasets

We collected the first dataset — which we call the SASSY

dataset — in a previous experiment. 25 participants were

equipped with 802.15.4 Tmote Invent sensor motes and

encounters were tracked for a period of 79 days, from which

we selected a 30-day section for our simulations.

The original dataset was very sparse due to hardware

limitations which meant that many encounters were lost.

Inspired by [7], we augment our traces using a working-day

and augmented random-waypoint model. Nodes randomly

select a waypoint from a set of points of interest and

walk according to predetermined paths (such as roads) to

reach these points. Nodes moved at 0.5–1.5ms−1. At each

waypoint the nodes could stop for 0–120s. Each node was

additionally randomly assigned a home location, and the

nodes would travel to this location to “sleep” for 8 hours

in every 24. Each node had an additional 10% chance of

either choosing to go to the Computer Science departmental

buildings (since our participants were mainly Computer

Science students) or their “home” at any waypoint selection.

The social network information for the SASSY dataset

was self-reported by the 25 participants at the start of

the experiment: their Facebook “friends”. Many participants

knew each other — the mean number of other participants

in each participant’s social network (i.e., Facebook friends)

was 9.8, with a standard deviation of 5.0.

The second dataset used was the well-known Reality

Mining (RM) dataset collected at MIT [6]. This dataset

comprises Bluetooth encounter traces from ≈100 mobile

phone users over the course of an academic year. To obtain

social network information for this dataset, we use the

participants’ address book information — if a pair of nodes

encounter one another, and at least one has the other in their

address book, then each node is said to have the other in its

social network. Unlike the SASSY dataset, few participants

knew each other: 52 participants had at least two participants

in their social network (and were thus candidate nodes for

our simulations). Of these 52 participants, the mean size of

the social network was 3.7, with a standard deviation of 2.0.

As participants left the experiment throughout the year

(and new participants joined), we could not treat the dataset

as one contiguous trace. We thus select out 30-day segments.

B. Simulation parameters

We performed trace-driven simulations using these two

datasets with the following parameters: simulation length of

30 days; 30 messages generated per day; message TTL of

one day; at least 10 runs for each set of parameters; SSNR

obfuscation from −80% to +200% at 20% intervals.3

For the SASSY dataset, which contains location

information, we used a customised version of the ONE

simulator [10], which included our augmented random

waypoint model, to generate ns-2 traces. For speed, we

used ns-2 rather than ONE for all of the simulations. The

RM dataset has no location information so we could not

use ns-2; we instead parsed the Bluetooth encounters and

simulated message-passing with a Python program.

C. Performance metrics

We evaluate our simulations using three metrics [9]:

• Delivery ratio: proportion of delivered messages, out

of the total number of unique messages created.

• Delivery cost: total number of messages (including

duplicates) transmitted, normalised by the total number

of unique messages created.

• Delivery delay: time taken for a message to reach its

destination.

D. OSNR implementation

Our OSNR implementation used a 128-bit Bloom filter. To

insert each element (node ID concatenated with a random

salt, as described in IV-B) into the filter, the element’s 128-

bit MD5 hash4 was divided into four 32-bit integers. Taking

each integer mod 128 (the filter length) resulted in four

values in range 0-127, and the four corresponding bits in

the Bloom filter were, if not already 1, set to 1.

E. Results

Figures 1–6 show our trace-driven simulation results for

our routing schemes with the SASSY and RM datasets. For

every set of parameters for our three metrics, applying

OSNR did not significantly impact routing performance —

the error bars overlap for each datapoint. Any impact from

Bloom filter false positives is so slight as to be insignificant.

Figure 1 shows that for the SASSY dataset, delivery

ratios are high for all tested social network size target

modifications. It is possible to remove 60% of the sender’s

social network’s nodes while still retaining a delivery ratio

of over 90% of the ratio with an unmodified social network.

Although much noisier, and with lower delivery ratios,

Figure 5 shows a similar result for the RM dataset. Large

modifications to the size of the sender’s social network can

be made without significantly affecting the delivery ratio.

3If we reach the upper bound of all nodes added, or the lower bound of
only one node remaining in the sender’s social network, we stop adding or
removing nodes for this message.

4MD5 is not collision-resistant, but we use the uniformity and one-
way properties, not collision-resistance property, of MD5. A maliciously-
generated collision does not affect the security of our system, since senders
generate Bloom filters on a per-message basis and the ability to generate
a collision would merely mean another false positive in routing — which
already may occur, and which can much more easily be produced by the
malicious sender setting more Bloom filter bits to 1.
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intervals. It is possible to remove over half of the social network links while
still retaining high message delivery ratios. 98% of messages arrive with
simple social network routing. 91% of messages arrive even after removing
60% of the source node’s social network links.
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Figure 2. SASSY dataset. Message delivery cost vs target percentage
modification of the number of friends of each message’s original sender.
As we obfuscate the sender’s social network by adding links, the delivery
cost increases.
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Figure 3. SASSY dataset. Message delivery delay vs target percentage
modification of each message sender’s social network. As we remove from
the sender’s social network, delivery delay increases – but only from about
6 to 8 hours for simple social network routing compared to SSNR with
-60% sender social network size target change.
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Figure 4. RM dataset. Delivery ratio vs target percentage modification of
each message sender’s social network. It is possible to modify the sender’s
target social network size greatly (-80%, +200%) without significantly
affecting delivery ratio.
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Figure 5. RM dataset. Message delivery cost vs target percentage
modification of each message sender’s social network. As we obfuscate
the sender’s social network by adding links, the delivery cost increases.
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Figure 2 shows delivery cost for the SASSY dataset

is significantly affected by modifying the sender’s social

network size: the smaller the social network, the lower

the cost of sending a message. Compared to simple social

network routing, with 50 data messages per unique message,

a −60% change in sender social network results in only

10 data messages: five times fewer. SSNR has improved

delivery cost, yet simultaneously retained a good delivery

ratio (Figure 1) and increased the sender’s privacy by not

revealing some of their true friends.

Figure 5 shows that delivery cost for the RM dataset

appears to show a similar trend as for the SASSY dataset, but

again with more noise. The corresponding absolute figures

for delivery cost, however, are lower than SASSY— perhaps

because RM encounters are much sparser.

Figure 3 shows that delivery delay for the SASSY dataset

increases when removing nodes from the sender’s social

network. This increase is from ≈6 to ≈8 hours from simple

social network routing to SSNR with removing 60% of the

sender’s social network. If delivery delay is a concern, we

may indeed reduce the delay by adding nodes with SSNR.

Figure 6, however, shows little correlation between

delivery delay and the modification of the size of the sender’s

social network for the RM dataset: any difference that may

exist seems to be lost in the noise from this dataset.

Finally, we see that for both datasets we can significantly

modify the sender’s social network size (e.g., by −60%),

thus increasing the privacy of the sender, and yet retain good

routing performance. Removing nodes may significantly

reduce delivery cost — a beneficial side effect — while

enhancing privacy. Conversely, if delivery delay or ratio

is paramount, SSNR allows adding nodes to improve

performance by these metrics, again while enhancing

privacy, though at the expense of increased delivery cost.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented two schemes for

enhancing privacy in social network routing in opportunistic

networks. We find that it is possible to obfuscate a sender’s

social network by removing up to 60% of the nodes from

the social network, while still maintaining a delivery ratio of

90% of unaltered social network routing. We demonstrated

that, by using Bloom filters, we can prevent eavesdropping

of social network information with only a minimal effect

on network performance. We evaluated these two schemes

using two real-world datasets. Although the datasets vary

widely (including in scale, location and connectivity), our

findings appear to hold for both.

We have presented only an initial evaluation of our routing

schemes; our work is ongoing. We need to formally analyse

whether the SSNR and OSNR schemes provide consistent

deniability. We are exploring refined versions of these

schemes, e.g., selecting popular or well-connected nodes to

remove or add to a node’s social network, although these

may introduce additional attacks. We are also exploring more

of the attacks described in our threat analysis, and testing

against our schemes in simulation.

We note that the two datasets used to evaluate our routing

schemes may not be representative of general opportunistic

network usage. Both involve participants who opted in to

small-scale experiments; their social networks and mobility

patterns may differ from a universal deployment. We are

searching for new datasets to use to evaluate our schemes.
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