
Networked games — a QoS-sensitive application for
QoS-insensitive users?

Tristan Henderson
∗

Department of Computer Science
University College London

Gower Street
London WC1E 6BT, UK

T.Henderson@cs.ucl.ac.uk

Saleem Bhatti
Department of Computer Science

University College London
Gower Street

London WC1E 6BT, UK

S.Bhatti@cs.ucl.ac.uk

ABSTRACT
Research into providing different levels of network Quality of Ser-
vice (QoS) often assumes that there is a large market for QoS-
sensitive applications that will be fulfilled once QoS-enabled net-
works have been deployed. Multiplayer networked games are an
example of such an application that requires QoS, and hence will
only become popular if QoS is made widely available. Theprima
facieevidence, however, is that games are already popular, in spite
of the existing QoS-free best-effort Internet.

Networked games may have become popular despite the lack of
QoS because players “make do” with what is available to them.
Such popularity is a double-edged sword. It may mean that there
is a demand, as yet unfulfilled, from game players for QoS-enabled
networks. On the other hand, it may mean that players have become
accustomed to playing games without QoS, and therefore might be
less willing to pay for higher QoS when it does eventually become
available.

In this paper we present the results of a short experiment to exam-
ine the QoS tolerances of game players. We use a set of popular
First Person Shooter (FPS) game servers that are publicly available
to Internet users at large. By systematically altering the network
latency to the servers, we attempt to study whether degraded QoS
(in the form of higher network delay) affects a user’s decision to
participate in the game.

We find that increased network delay has an effect on a user’s de-
cision to join a game server. It appears, however, that there is no
significant difference in the number of players who leave the game
as a result of increased delay. We speculate that this may be due to
a user’s enjoyment exceeding their QoS-sensitivity, and discuss the
implications of our findings with respect to providing and charging
for QoS.

∗Tristan Henderson was sponsored by a Hewlett-Packard EPSRC
CASE award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGCOMM 2003 WorkshopsAugust 25 & 27, 2003, Karlsruhe, Ger-
many
Copyright 2003 ACM 1-58113-748-6/03/0008S ...$5.00.

1. INTRODUCTION
For many years, researchers have investigated and developed meth-
ods for providing different levels of Quality of Service (QoS) in
data networks. Perhaps the most famous examples are the IETF
standards for Integrated Services (IntServ) [5] and Differentiated
Services (DiffServ) [4]. Comparatively little effort, however, has
been expended on determining which applications may benefit from
networks that offer a menu of different levels of QoS. Instead, it is
assumed that there is a variety of QoS-sensitive applications, which
can be categorised into classes such as “Real Time” and “Non-
Real Time”, or by tasks, such as “Multimedia Collaboration” or
“Video-on-Demand” [7]. Once QoS-aware networks are deployed,
the market for these QoS-sensitive applications will become satis-
fied, thereby justifying the expense of enabling QoS in the network.

Multiplayer networked games are one example of a real-time QoS-
sensitive application. They are perhaps one of the most interesting
examples, because unlike other real-time applications such as mul-
timedia conferencing, games have already become popular amongst
Internet users. For instance, the Sony MMORPG (Massively Mul-
tiplayer Online Role-Playing Game)Everquestfeatures 400,000
regular users, each playing for an average of 20 hours a week [8],
whilst the Korean MMORPGLineageclaims that four million users
play on its servers [17]. Measurement studies also indicate that
games are responsible for an increasingly large amount of network
traffic [20].

The popularity of multiplayer networked games is puzzling, since
the current Internet can only provide a best-effort service. The lev-
els of delay, loss and throughput that human factors research in-
dicates to be a requirement for multimedia applications, cannot be
guaranteed in the existing Internet. In spite of this, hundreds of
thousands of users of the best-effort Internet are happy to use this
network to play fast-paced real-time networked games.

One possible explanation for the popularity of networked games on
the Internet is that players are simply “making do” with best-effort
service, since they lack the option to acquire higher levels of QoS.
They would rather play games over a lossy and high-delay network,
than not play games at all.

The flipside to having millions of players already making do with
best-effort service, however, is that if and when QoS-enabled net-
works do become deployed, the higher levels of QoS that such net-
works make available will have to offer significant benefits over
best-effort service. Price-sensitive players may not see the point in

paying for levels of QoS that only offer incremental improvements
over the existing networked games.

Whether price-sensitive players will be willing to pay for QoS may
depend in some part on whether they are able to detect the effects
of higher or lower levels of QoS. A player who cannot tell the dif-
ference between a best-effort and a priority service will be unlikely
to pay for the latter. In this paper, we examine whether current
game players can detect different levels of QoS. We concentrate on
one aspect of network QoS, namely, network latency or delay. By
altering the delay between game players and a public game server,
we test whether users are dissuaded by degraded QoS.

This paper is organised as follows. In Section2 we outline the QoS
requirements for networked games and discuss why games have
been categorised as a QoS-sensitive application. Section3 outlines
the experiments described in this paper and the methodology used.
In Section4 we describe our results, and in Section5 we discuss
the implications of these results and some ideas for future work.

2. QOS REQUIREMENTS FOR GAMES
Mathy et al. [19] list the five QoS parameters that are typically
applied to group multimedia applications:

• throughput — the minimum data rate

• transit delay — the elapsed time between a data message
being emitted from a sender and consumed by a receiver

• delay jitter — the maximum variation allowed in delay

• error rate — the ratio of incorrectly-received or lost data to
sent data

• degree of reliability — the minimum number of members
of the group that must receive each item of data

Different applications will have different requirements for each of
these parameters — for instance, a video conference might require
low jitter, but tolerate a high level of loss, whereas a shared white-
board might require no loss, but tolerate low bandwidth.

Throughput is typically not an issue for current networked games,
and most games are designed to operate at a worst case over dial-
up links. Instead, several researchers assert that delay is the most
important parameter of performance for a networked multimedia
application [29, 30]. In particular, network delay is judged to be a
large problem for game players. On the popular online discussion
forum Slashdot [33], one can find comments such as:

• “150 [ms] is not tolerable.”

• “no way anybody can play quake competitivly [sic] with a
ping over 200ms.”

• “In Q3 [Quake III] I can’t play with a ping over 90 [ms]”

• “I find a ping of more than 50 [ms] intolerable. I won’t play
a game at 100 [ms] or more.”

It would therefore appear that some game players believe that the
delay bounds for networked games to be tight, and a requirement
for such an application.

The importance of low delay in networked games is well-known to
game designers, who have devised methods to attempt to conceal
or repair the effects of high network latency [3]. The issue of delay
is also made apparent to end-users in some games. Figure1 shows
the in-game server browser for the gameHalf-Life. The circled
column marked “Net Spd” is intended to provide an indication of
the network delay between the player and a given game server, and
thus the end-user is able to choose between different game servers
on the basis of their round-trip time.

Figure 1: Half-Life game server browser

The delay bound for real-time multimedia applications, that is, the
level of delay above which performance becomes impaired, has
been studied by researchers in a variety of fields. Human factors
research indicates that a round-trip time of 200ms might be an ap-
propriate limit for real-time interaction [2]. The IEEE Distributed
Interactive Simulation (DIS) standard stipulates a latency bound of
between 100ms and 300ms for military simulations [13]. MacKen-
zie and Ware find that in a VR (Virtual Reality) environment, in-
teraction becomes very difficult above a delay of 225ms [18]. The
ITU G.114 standard recommends between 0 and 150ms for a one-
way transmission time for voice communications, although up to
400ms is considered acceptable [14]. Park and Kenyon [27] ex-
amine a two-user cooperative task in an Networked Virtual Envi-
ronment (NVE). Performance with 200ms latency is significantly
worse than 10ms, and jitter is also found to have a significant ef-
fect.

There have been few studies of commercially-available networked
games in particular. Pantel and Wolf [25] examine two car-racing
games, and find that “a delay of more than 100ms should be avoided”,
although they do note that different types of games might have dif-
fering requirements. For instance, Schaeferet al. [31] examine
players of another type of game, the shooting gameXBlast, using a
Mean Opinion Score (MOS) methodology, and find that a delay of
139ms is acceptable. Vaghiet al. [35] analyse the effects of delay
in a simple ball game implemented on the MASSIVE NVE , and
find that delay becomes perceptible through discontinuities and vi-
sual anomalies in the game. Apart from these studies, many of the
delay requirements for games have been extrapolated from those
for other real-time applications. Cheshire [6] proposes a latency
bound of 100ms for networked games, although no empirical basis
is given for this.

The most popular networked game genres are currently the afore-
mentioned MMORPG, the RTS (Real-Time Strategy) and the FPS
(First Person Shooter). Of these games, the FPS game is perhaps
the most delay-sensitive, as it entails users running around shooting
at each other in real-time, whereas the MMORPG and RTS games
involve user interaction at a slightly slower pace. Armitage studies
the FPS gameQuakeand finds that network latencies above 150ms
appear to dissuade game players [1]. In previous work, we have
looked at a similar FPS game,Half-Life, and finds that players tend
not to play when latencies are above 225-250ms [11].

3. METHODOLOGY
We have been running public game servers for the FPS gameHalf-
Life for some time. There are several advantages to using an FPS
game over an MMORPG or RTS game for experiments. MMORPGs
tend to have a small number of servers with a large number of par-
ticipants. These servers are controlled by companies who typically
do not allow non-commercial access. In comparison, FPS games
have a large number of servers, with a small number of participants
per server. The software to run aHalf-Life server is included with
the game, and there are anywhere between 2,500 to 20,000 servers
running on the Internet at any given time [12]. It is therefore easy to
set up servers for research purposes. The servers that we have been
running are registered under a non-academic URL, and are only
advertised through the standard mechanisms built in to the game.
They should thus appear identical to any of the other servers on the
Internet from an end-user’s perspective.

For the experiments described in this paper, we used a pair of iden-
tical Half-Life game servers, comprising 1.2GHz AMD Athlon PCs
with 256 Mb of RAM, running Linux kernel version 2.4.9 and
Half-Life version 3.1.0.8. We refer to these servers in this paper as
server1 andserver2 respectively. We configured the servers
so as to disable any delay-concealing techniques [3]. Disabling this
“lag compensation” at the server overrides any client-side settings;
it does not, however, disable delay-concealing mechanisms that are
purely client-side, such as dead reckoning. The servers were con-
nected to the public Internet via a gateway machine, which was
used to introduce delay into the network. The gateway machine
was a 1GHz AMD Athlon PC, also with 256 Mb of RAM and run-
ning Linux kernel version 2.4.9.

The iptablesand libipq interfaces in Linux [22] were used to in-
troduce delay into the network. Aniptablesfilter was set up on
the gateway to queue packets that were addressed to the IP address
and port number of the game server. These packets were queued in
userspace and placed back on the network queue after the desired
period of time had passed.

The servers were left to run for two months to build up a regular
userbase. Once this had occurred, we added additional delay to
one of the servers, so as to degrade the QoS to that server. This
additional delay alternated between the two servers, so that users
would not begin to ignore one of the servers.

We hypothesised that higher levels of delay could affect users in
two ways:

1. They would be dissuaded from joining the server at all. This
might be by looking at the higher delay in server browsers
(Figure1), or by joining the server, observing the high la-
tency and disconnecting.

2. Players already on the server might leave the server after ob-
serving their higher latency.

We thus designed our experiments to test these two different possi-
bilities.

4. RESULTS
4.1 Joining a server

0

5

10

15

20

25

26/04 26/04 27/04 27/04 28/04 28/04 29/04 29/04 30/04
P

la
ye

rs
Time

Session membership

server1
server2

(a) Additional delay toserver1

0

5

10

15

20

25

01/05 02/05 03/05 04/05 05/05 06/05 07/05 08/05

P
la

ye
rs

Time

Session membership

server1
server2

(b) Additional delay toserver2

Figure 2: Players on two servers with differing levels of net-
work delay

To test whether higher levels of delay affect a user’s decision to
join a game server, 50ms of delay was added to one of the servers,
and the number of players on both servers was monitored. Fig-
ures2 and3 show the number of players on the two servers dur-
ing a representative sample of the experiment (the data in the two
graphs have been windowed by a 60 minute period for clarity). Fig-
ure2 shows that in the presence of additional delay, the number of
players that connect to a server drops markedly. From 26/04/02 to
02/05/02,server1 (the solid line) had additional delay, and so

there are fewer players on that server (Figure2(a)). From 02/05/02
to 08/05/02,server2 (the dashed line) had additional delay, and
the situation reverses (Figure2(b)). The data were windowed to
create a time-series with a frequency of one minute. A pairedt-test
on this time series indicates that the difference between the number
of players on the two servers is significant,t(2016) = 59.65, p <
0.01. Figure3 shows a similar time period to Figure2, except that
there was no additional delay added to either server. In the absence
of any additional delay, the difference in the number of players
on the two servers is insignificant,t(4591) = 1.66, p > 0.05. We
can therefore conclude that network delay does have an effect on a
user’s decision to join a game server.

0

5

10

15

20

25

16/06 17/06 18/06 19/06 20/06 21/06

P
la

ye
rs

Time

Session membership

server1
server2

Figure 3: Players on two servers with no additional network
delay

4.2 Leaving a server
To examine the effects of delay on a user’s decision to leave a
server, another experiment was carried out on our two public game
servers over one month. Every two hours, an additional level of
delay was added to one of the servers for ten minutes. The other
server had no additional delay, to act as a control. The exact tim-
ing of these additional delay periods varied randomly within a 20
minute time period, so that players would not notice a regularly oc-
curring increase. The additional level of delay varied between 25
and 250 milliseconds — the upper bound of 250ms was chosen be-
cause this approximated the mean delay of the players observed on
the server, and thus would be an increase of 100% for some play-
ers, which we assumed would be high enough to cause players to
leave the server.

Figure4 plots the percentage of players on the server that chose to
leave in the ten minute period with added delay, against the level of
additional delay (where 0 on thex-axis represents the control server
with no additional delay). Each of the six boxplots in this Figure
comprises a “box” that indicates the first to third quantile of the
observations at each level of delay, while the horizontal line in the
box indicates the median, and the “whiskers” indicate the extreme
values. By examining the median values, it can be seen that as
the level of additional delay increases, there is little change in the
percentage of players that chose to leave the server, which remains
approximately 25-30%, even on the server with no additional delay.

The delay during the period with additional delay of the players
who chose to leave the server (mean = 296.54ms) was significantly
higher than that of those who chose to stay (mean = 250.34ms),

0 25 50 100 150 250

0
20

40
60

80
10

0

Players leaving a server as a result of additional delay

Additional delay (ms)

P
er

ce
nt

ag
e

of
 p

la
ye

rs
 w

ho
 le

av
e

se
rv

er

Figure 4: Players leaving a server as a result of additional delay

t(1507) = 3.7246, p < 0.01. A rise in delay might therefore only
lead a player to leave a game when the additional delay increases
a player’s delay beyond an absolute threshold. We calculate the
metricadddelay, the increase in delay caused by the additional de-
lay by considering a player’s delay during a session without the
additional delay, divided by the player’s delay during the session
with the additional delay. There was no significant difference in
adddelaybetween those players who left (adddelay= 0.7711) and
those players who stayed (adddelay= 0.7735),t(2113)= 0.1065, p=
0.9152, which indicates that a proportional increase in a player’s
delay has little effect.

Players who have played for a longer time might not want to leave
the game, even in the presence of higher delay, since they may have
been playing for a sufficiently long time to get highly engrossed in
the game’s virtual world. We examined the duration of a player’s
session prior to a period with additional delay of players who chose
to stay and those who chose to leave. The duration of the players
who chose to stay on the server was significantly higher,t(3342) =
4.7339, p < 0.01, with players who stayed having a mean duration
of 2613.49 seconds, whilst players who chose to leave had a mean
duration of 1796.54 seconds. It appears that the longer that a player
remains in the game, the more they might be enjoying the game,
and hence the less likely they would want to leave, even in the
event of additional network delay.

Another factor that might affect a user’s decision to leave the server
is the number of times that they had already played on the server.
There might be hysteresis effects for regular players; they might be
used to playing on a particular server, or have friends on the server,
and thus be more willing to put up with degraded QoS to stay on
their chosen server. We found, however, that regular players were
no less likely to leave the server. The number of times a player
had played on the server prior to an additional delay period was not
significantly different between those who stayed (11.55) and those
who left (10.87),t(2895) = 1.12, p = 0.2628.

Players might choose to remain on the server in spite of the addi-
tional delay because they were unable to notice the delay. Analysing
players’ actions within the game indicates that this is unlikely, how-
ever. The average number of kills per minute made by players in

periods with no additional delay was 1.430, which was significantly
higher than the average of 0.6042 during the periods with addi-
tional delay,t(3937) = 17.6115, p < 0.01. The average number
of times a player was killed per minute was 1.104 in the presence
of additional delay, which was significant higher than the average
of 0.0708 during the periods with no additional delay,t(3467) =
67.499, p < 0.01. The additional delay thus had a significant effect
on players’ performance, which we would expect they would no-
tice. Although they could notice the delay and their performance
was degraded, players were not inconvenienced to the extent that
they would leave the server.

4.3 Leaving a server due to differences in rel-
ative delay

By introducing delay to all the players on the server, we could not
conclude that additional delay caused players to leave the server.
One reason for this, however, might be that all the players were ex-
periencing additional delay, and therefore they might believe that
this was a level playing field, since everyone was being affected by
the delay. If only some players were experiencing additional de-
lay, i.e., their relative delay was higher than the other players, they
might feel disadvantaged, and perhaps choose to leave the server.

To determine whether players would leave if additional delay caused
them to have higher relative delays, the experiment described in
Section4.2was repeated, but instead of introducing additional de-
lay to all the players, 20% of the players were randomly chosen to
receive additional delay.

25 50 100 150 250

0
20

40
60

80
10

0

Players leaving a server as a result of additional relative delay

Additional delay (ms)

P
er

ce
nt

ag
e

of
 p

la
ye

rs
 w

ith
 a

dd
iti

on
al

 d
el

ay
 w

ho
 le

av
e

se
rv

er

Figure 5: Players leaving a server as a result of additional rela-
tive delay

Figure5 shows the percentage of players who received additional
delay that left the server when this additional delay was introduced.
The average percentage of players who left was 32.55%. In the ex-
periment where all the players received additional delay, an aver-
age of 33.96% left the server (Figure4). We cannot reject the hy-
pothesis the means of these two measures are the same,t(258) =
0.4858, p = 0.6275. It would appear that an increase in relative de-
lay is no more a component in a player’s decision to leave a server
than an increase in absolute delay.

Players who had been playing for longer were again less likely to
leave the server in the event of additional delay,t(399)= 4.5723, p<
0.01. Players who received additional delay and chose to stay had
an average duration of 2234.102 seconds, whilst those who left had
an average duration of 1304.488 seconds.

As with the addition of delay to all the players, players who re-
ceived additional delay performed worse during these periods. The
average number of kills per minute in the absence of additional de-
lay was 1.456, as opposed to 0.6233 with additional delay, which is
a significant difference,t(3035) = 15.4988, p < 0.01. The number
of times that a player was killed also increased significantly under
additional delay, from an average of 0.6042 times per minute to
1.430,t(3937) = 17.6115, p < 0.01.

Adding delay to some of the players on the server created effects
that were similar to those when delay was added to all of the players
on the server. We are thus unable to conclude that additional rela-
tive delay causes a player to leave a server, in spite of the noticeable
detrimental effects on player performance.

5. DISCUSSION AND FUTURE WORK
These experiments indicate that degraded QoS can be noticed by
networked game players, in that it can dissuade them from joining
a game server. Once game players are connected to a server, how-
ever, it appears that degraded QoS in the form of higher network
delay does not cause them to leave the server. Moreover, players
who have been on the server for a longer period of time are less
likely to leave in the event of higher delay.

Our experiments have been very short, and there are parts of our
methodology that may require further refinement. As with all ex-
periments that take place over the public Internet, there are many
variables that have been out of our control. We do not know whether
players left or chose to stay on the server for exogenous reasons.
For instance, they may have been able to detect the higher delay,
but ignored it, believing that it was due to transient congestion, or
because they wanted to carry on with the game regardless. We be-
lieve, however, that the advantages of using public servers, such as
the larger number of participants, outweigh the drawbacks.

As the experiments presented here have been brief, there are sev-
eral improvements that can be addressed in future work. It might be
interesting to only add delay to the same players each time, rather
than a random selection, or targeting those players with higher skill,
to see if they can better adapt to higher delay. Other possible mod-
ifications might be to alter the length and periodicity of the addi-
tional delay, or to increase the level of additional delay.

In this paper we have only examined one facet of network QoS,
network delay. Although it is commonly assumed that delay is
the most important QoS factor for networked games, it would be
useful to further examine game players’ tolerances for different
levels of network throughput, jitter and loss. Mobile gaming has
often been cited as a “killer application” for the expensive third-
generation wireless phone networks, and such networks are sus-
ceptible to much higher levels of jitter and loss than the fixed net-
works on which most online gaming currently takes place. It would
also be interesting to examine different types of games, as studies
of MMORPG, RTS and driving games [34, 25, 32] have indicated
that their delay requirements differ from those of the FPS game.

Our results might be skewed by the nature of the application that
we have examined. TheHalf-Life game offers players the chance
to choose between different game servers on the basis of their de-
lay, as we discussed in Section2, and it has been demonstrated that
players do tend to choose servers with lower delay [1]. Thus play-
ers may select servers to which they have low latency at the time of
joining. Once in the game, however, a player has to actively choose
to monitor their delay, by bringing up the “Scoreboard” which lists
the number of “frags” (kills) and the network delay for each player
connected to the server. We have conducted surveys of game play-
ers that indicate that many players do not check their delay on a
regular basis during the game [24]. One reason why players seem
to be more tolerant of delay once they have connected to a server,
might be that they are no longer checking their delay, and so are
unaware of any added latency. On the other hand, the fact that in-
creased delay is not an issue for the players unless they are made
aware of it (i.e., by the act of checking the scoreboard) implies that
perhaps delay is not as big a hindrance to gameplay as is commonly
assumed.

The above limitations and caveats aside, the results in this paper
indicate that players are willing to tolerate higher levels of delay
than the human factors literature indicates. They are also willing
to tolerate higher levels of delay than our own previous work has
shown [11], and in some cases a delay increase of 100% was not
enough to dissuade players. We have stated that we believe that
players are more delay-sensitive when choosing a server than once
they are connected and playing the game. Thus, it is unsurprising
that the player tolerances we present here appear to be higher than
those on an unadulterated game server.

If users are not leaving a game server because they are unable to
detect the degraded QoS, then it means that they would be unlikely
to pay for higher, but undetectable, levels of QoS. We have found
that many game players are unwilling to pay for higher levels of
QoS [24]. Many of the game players that we have interviewed
would prefer the cost of better network performance to be included
in the price of the game, or to be transparent to the user. This prefer-
ence for inclusive charges is reflected in the more successful game
business models — companies that have attempted to charge “per-
play” [28] have been unable to gain the large audiences of games,
such asEverquestandLineage, that charge all-inclusive monthly
fees. This predilection by end-users for “flat rate” pricing has also
been noted for Internet access and other services [9, 23]. Yahoo!,
however, has recently launched an online rental games portal [21],
and it remains to be seen whether this will be a failure or success.

If game players cannot detect higher levels of delay, or can detect
but choose to ignore them, then this has interesting implications for
providing QoS for networked games. It might not be optimal for
a network provider to offer QoS policies such as Assured [10] or
Expedited Forwarding [15], where QoS preferences are predeter-
mined for the life of a flow or application. Instead, a policy where
higher levels of QoS are offered at the beginning of a player’s ses-
sion, to entice them into the game, and slowly degrading QoS as the
players become more engrossed in the game’s virtual world, might
be preferable from a network provider’s point of view. Of course,
this is suboptimal from the player’s point of view, especially if they
were paying for a given level of QoS. Players might thus choose to
alter their behaviour if offered such a QoS policy, for instance by
disconnecting and reconnecting so as to receive the initially-higher
QoS. Several researchers have considered non-cooperative network
users in regard to provisioning QoS [16, 26]. The game-theoretic

issues of a non-cooperative ISP who wishes to deceive their users
by providing dynamically-degrading QoS policies are a potential
avenue for future work.

6. REFERENCES
[1] G. Armitage. Sensitivity of Quake3 players to network

latency. Poster,ACM SIGCOMM Internet Measurement
Workshop 2001, Berkeley, CA, USA, Nov. 2001.

[2] R. W. Bailey.Human Performance Engineering — Using
Human Factors/Ergonomics to Achieve Computer System
Usability. Prentice Hall, Englewood Cliffs, NJ, USA, second
edition, 1989.

[3] Y. W. Bernier. Latency compensating methods in
client/server in-game protocol design and optimization. In
Proceedings of the 15th Games Developers Conference, San
Jose, CA, USA, Mar. 2001.

[4] S. Blake, D. L. Black, M. Carlson, E. Davies, Z. Wang, and
W. Weiss. An architecture for differentiated services, Dec.
1998. RFC 2475.

[5] R. Braden, D. Clark, and S. Shenker. Integrated Services in
the Internet architecture: an overview, June 1994. RFC 1633.

[6] S. Cheshire. Latency and the quest for interactivity, Nov.
1996. White paper commissioned by Volpe Welty Asset
Management, L.L.C., for the Synchronous Person-to-Person
Interactive Computing Environments Meeting.

[7] M. F. Daneshmand, R. R. Roy, and C. G. Savolaine.
Framework and requirements of quality of service for
multimedia applications. InProceedings of the 1997 IASTED
International Conference on Intelligent Information Systems
(IIS ’97), pages 466–474, Grand Bahama Island, Bahamas,
Dec. 1997.

[8] Inside Sony Online Entertainment.Edge, 102:56–61, Oct.
2001.

[9] P. C. Fishburn and A. M. Odlyzko. Competitive pricing of
information goods: Subscription pricing versus pay-per-use.
Economic Theory, 13(2):447–470, Mar. 1999.

[10] J. Heinanen, F. Baker, W. Weiss, and J. Wroclawski. Assured
forwarding PHB group, June 1999. RFC 2597.

[11] T. Henderson. Latency and user behaviour on a multiplayer
game server. InProceedings of the 3rd International
Workshop on Networked Group Communication (NGC),
pages 1–13, London, UK, Nov. 2001.

[12] T. Henderson. Observations on game server discovery
mechanisms. InProceedings of the 1st Workshop on Network
and System Support for Games (NetGames), pages 47–52,
Braunschweig, Germany, Apr. 2002.

[13] Institute of Electrical and Electronic Engineers.
1278.2-1995, IEEE Standard for Distributed Interactive
Simulation — Communication Services and Profiles. IEEE,
New York, NY, USA, Apr. 1996.

[14] International Telecommunication Union.ITU-T
Recommendation G.114: International telephone
connections and circuits — General Recommendations on
the transmission quality for an entire international telephone
connection — One-way transmission time. International
Telecommunication Union, Geneva, Switzerland, May 2000.

[15] V. Jacobson, K. Nichols, and K. Poduri. An expedited
forwarding PHB, June 1999. RFC 2598.

[16] Y. A. Korilis, A. A. Lazar, and A. Orda. Architecting
noncooperative networks.IEEE Journal of Selected Areas In
Communications, 13(7):1241–1251, Sept. 1995.

[17] J. Larkin. Winning the monster game.Far Eastern Economic
Review, page 32, Sept. 05, 2002.

[18] I. S. MacKenzie and C. Ware. Lag as a determinant of human
performance in interactive systems. InProceedings of the
CHI ’93 Conference on Human factors in computing systems,
pages 488–493, Amsterdam, The Netherlands, Apr. 1993.

[19] L. Mathy, C. Edwards, and D. Hutchison. Principles of QoS
in group communications.Telecommunication Systems,
11(1-2):59–84, 1999.

[20] S. McCreary and K. Claffy. Trends in wide area IP traffic
patterns: A view from Ames Internet Exchange. In
Proceedings of the ITC Specialist Seminar on IP Traffic
Modeling, Measurement and Management, Monterey, CA,
USA, Sept. 2000.

[21] E. Medina. Yahoo enters game rental arena.Boston Globe,
page C3, Sept. 23, 2002.

[22] netfilter/iptables project.
http://netfilter.samba.org .

[23] A. M. Odlyzko. Internet pricing and the history of
communications.Computer Networks, 36(5-6):493–517,
Aug. 2001.

[24] M. Oliveira and T. Henderson. What online gamers really
think of the Internet. InProceedings of the 2nd Workshop on
Network and System Support for Games (NetGames), pages
177–185, Redwood City, CA, USA, May 2003.

[25] L. Pantel and L. C. Wolf. On the impact of delay on real-time
multiplayer games. InProceedings of the 12th International
Workshop on Network and Operating System Support for
Digital Audio and Video (NOSSDAV), pages 23–29, Miami
Beach, FL, USA, May 2002.

[26] K. Park, M. Sitharam, and S. Chen. Quality of service
provision in noncooperative networks: heterogenous
preferences, multi-dimensional QoS vectors, and burstiness.
In Proceedings of the 1st International Conference on
Information and Computation Economies (ICE-98), pages
111–127, Charleston, SC, USA, Oct. 1998.

[27] K. S. Park and R. V. Kenyon. Effects of network
characteristics on human performance in a collaborative
virtual environment. InProceedings of the IEEE Virtual
Reality Conference (VR ’99), pages 104–111, Houston, TX,
USA, Mar. 1999.

[28] A. Patrizio. Coming soon: Pay-per-game.Wired News,
Oct. 20, 2000.http://www.wired.com/news/
culture/0,1284,39505,00.html .

[29] M. Ranta-aho, A. Leppinen, G. Poulain, A. Roella,
M. Mirabelli, A. Ousland, and J. Norgaard. Task-dependent
user requirements for Quality of service of
Videoconferencing-CSCW services. InProceedings of the
16th International Symposium on Human Factors in
Telecommunications, pages 251–254, Oslo, Norway, May
1997.

[30] D. P. Reed. Going nowhere fast.Context Magazine,
July/Aug. 1999.

[31] C. Schaefer, T. Enderes, H. Ritter, and M. Zitterbart.
Subjective quality assessment for multiplayer real-time
games. InProceedings of the 1st Workshop on Network and
System Support for Games (NetGames), pages 74–78,
Braunschweig, Germany, Apr. 2002.

[32] N. Sheldon, E. Girard, S. Borg, M. Claypool, and E. Agu.
The effect of latency on user performance in Warcraft III. In
Proceedings of the 2nd Workshop on Network and System
Support for Games (NetGames), pages 3–14, Redwood City,
CA, USA, May 2003.

[33] Slashdot.org. How fast too slow? A study of Quake pings,
May 24, 2001.http://slashdot.org/articles/
01/05/24/2044233.shtml .

[34] M. Terrano and P. Bettner. 1500 archers on a 28.8: Network
programming in Age of Empires and beyond. InProceedings
of the 15th Games Developers Conference, San Jose, CA,
USA, Mar. 2001.

[35] I. Vaghi, C. Greenhalgh, and S. Benford. Coping with
inconsistency due to network delays in collaborative virtual
environments. InProceedings of the ACM Symposium on
Virtual Reality Software and Technology, pages 42–49,
London, UK, Dec. 1999.

http://netfilter.samba.org
http://www.wired.com/news/culture/0,1284,39505,00.html
http://www.wired.com/news/culture/0,1284,39505,00.html
http://slashdot.org/articles/01/05/24/2044233.shtml
http://slashdot.org/articles/01/05/24/2044233.shtml

	Introduction
	QoS requirements for games
	Methodology
	Results
	Joining a server
	Leaving a server
	Leaving a server due to differences in relative delay

	Discussion and Future Work
	REFERENCES

