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Abstract. Multiplayer online games represent one of the most popu-
lar forms of networked group communication on the Internet today. We
have been running a server for a first-person shooter game, Half-Life. In
this paper we analyse some of the delay characteristics of different play-
ers on the server and present some interim results. We find that whilst
network delay has some effect on players’ behaviour, this is outweighed
by application-level or exogenous effects. Players seem to be remarkably
tolerant of network conditions, and absolute delay bounds appear to be
less important than the relative delay between players.

1 Introduction

Multiplayer online games represent one of the most popular forms of networked
group communication on the Internet today, and they contribute to an increas-
ingly large proportion of network traffic [11]. There has been little work to anal-
yse or characterise these applications, or to determine any specific user or net-
work requirements. The real-time nature of many of these games means that
response times are important, and in a networked environment this means that
round-trip delays must be kept to a minimum. Is network delay, however, the
most important factor in a user’s gaming experience? In this paper we examine
the relationship between application-level delay and player behaviour in multi-
player networked games. The main question that we wished to answer was “How
important is delay in a player’s decision to select and stay on a particular games
server?”. To achieve this, we have been running a publicly-accessible server for
one of the more popular FPS (First Person Shooter) games, Half-Life [13]. From
this server, we have logged and analysed usage behaviour at both the application
and network level. The paper is structured as follows. In Section 2 we look at pre-
vious work and discuss some expectations we had prior to this study. Section 3
describes our server setup and data collection methodology. Section 4 describes
the results that we observed, and Section 5 outlines directions for further work.
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2 Background

In this section we discuss previous work on multiplayer games, and what this
led us to expect before commencing this study.

Previous analysis of popular commercial networked games has thus far con-
centrated on observing local area network traffic and behaviour [2, 4], and network-
level rather than user- and -session-level characteristics. There is also little
empirical analysis of the delay requirements for real-time multiplayer applica-
tions. However, it is generally accepted that low latencies are a requirement.
Cheshire [5] proposes 100ms as a suitable bound, whilst human factors research
indicates that 200ms might be a more appropriate limit [1]. The IEEE DIS (Dis-
tributed Interactive Simulation) standard stipulates a latency bound of between
100ms and 300ms for military simulations [8]. MacKenzie and Ware find that in
a VR (Virtual Reality) environment, interaction becomes very difficult above a
delay of 225ms [10]. Such previous work implies that there should be an abso-
lute bound to player delay, beyond which players’ gameplay becomes so impaired
that they would either abort the game or find another server.

MiMaze was a multiplayer game which ran over the multicast backbone
(MBone). Some statistics related to a network session of the game are presented
in [6]. Using a sample of 25 players, they find that the average client delay is
55ms, and as such the state synchronisation mechanisms are designed with a
maximum delay of 100ms in mind. The limited nature of the MBone, however,
means that the measurements taken might not be representative of games today.
The average delay is far lower than what we observe, and might result from the
fact that all clients were located within the same geographic region (France) and
well-connected to each other via the MBone.

Like MiMaze, Half-Life uses a client-server architecture, but the distribution
model is unicast. Players connect to a common server, which maintains state
about the nature of the game. The objective of the game is to shoot and kill
as many of the other players as possible. This setup is representative of most of
the popular FPS games. Games are typically small, between 16 and 32 players,
and there are several thousand servers located all over the Internet. Table 1
shows the average number of servers for some of the more popular games. We
obtained these figures by querying master servers for these games every 12 hours
for two months. Since there are lots of small groups on servers located all over
the Internet, it is reasonable to assume that players will attempt to connect to
one of the servers with the lowest delay. This implies that most players would
come from geographic locations near to our server, assuming that these have
lower delays.

The nature of FPS games means that delay should be an important factor
in the gaming experience. Players run around a large “map” (the virtual world)
picking up weapons and firing at each other. Low response times should therefore
be an advantage, since players can then respond more successfully to other users.
If, however, the main benefit of low delay is to gain an advantage over other
players, then we might expect that absolute delay is not so important as the



Game Average number of servers
Half-Life 15290.52
Unreal Tournament|2930.16
Quake IIT Arena  |2217.93
Quake IT 1207.43
Tribes 2 968.67
QuakeWorld 389.28
Quake 84.94
Sin 49.05
Tribes 42.51
Kingpin 42.20
Heretic I1 9.12

Table 1. Average number of servers for different FPS games

variance of delay, if a player needs only to have a relatively low delay compared
to the other players in the game.

Usability analysis of non-networked computer games, e.g. [9] indicates that
many actions become routine for players as they become expert at the tasks
involved, but whether this still holds when the opponents are less predictable
(i-e., other humans) is unclear. Unfortunately, we know of no usability studies
that specifically analyse networked games, but perhaps regular and highly-skilled
players might be able to better tolerate delay, as they become more adept at the
specific details and strategy of a particular game, such as Half-Life.

3 Methodology

We recorded users than connected to a games server that we set up at University
College London (UCL) in the UK. This server comprised a 900MHz AMD Athlon
PC with 256 Mb of RAM, running Linux kernel version 2.4.2, and was connected
to our departmental network via 100BaseT Ethernet. To prevent the possibility
of users being prejudiced by connecting to an academic site, we registered a
non-geographic .com domain name to use instead of a cs.ucl.ac.uk address. The
server was advertised to potential players only by using the game’s standard
mechanisms, whereby a server registers with a “master server”. These master
servers exist to provide lists of game servers for players; when a player wishes to
play a game, they either connect to a known IP address (obtained through out-
of-band information or from previous games), or they query the master server
to find a suitable game server.

The game was set to rotate maps every 60 minutes, so as to keep the game
interesting for existing and potential players. In addition, players were permitted
to vote for the next map or to extend the current map at each map rotation
interval. The number of players permitted to access the server was arbitrarily
set to 24; although the game can potentially support a much higher number of
players, most of the more popular maps only effectively scale to 24 players due



to a lack of “spawn points” (locations where players can enter the map). There
were no specific game-based sessions or goals imposed; players were free to join
and leave the server at any time.

Player behaviour was monitored at both the application and the network
level. For application-level logging, we took advantage of the server daemon’s
built-in logging facilities, and augmented this with an additional third-party
server management tool to provide more comprehensive logs. Packet-level mon-
itoring used tcpdump, which was set to log UDP packet headers only.

The data that is analysed here derives from running the server between 21
March 2001 18:33 GMT and 15 April 2001 08:28 BST. In this time we observed
31941 sessions (a single user joining and leaving the server).

3.1 Determining unique users

Many of the issues that we examine in Section 4 require knowledege of which
sessions correspond to which particular users, for example, examining the average
delay across all of a particular players’ sessions. Such persistent user/session
relationships cannot be determined by network-level traces alone, and session-
level data is required. However, the nature of most FPS games, where any user
can connect to any appropriate server with a minimal amount of authentication,
means that determining which sessions belong to which users can be difficult.

Connecting to a Half-Life server is a two-stage process. The client first au-
thenticates with the so-called “WON Auth Server” (the acronym WON stands
for World Oppponent Network, the organisation that runs the gaming web-
site http://wuw.won.net). The authentication server issues the player with a
“WONID”, a unique identifier generated using the player’s license key, which is
provided with the CD-ROM media when a player purchases the Half-Life soft-
ware. There is thus one unique WONID for each purchased copy of the game.
Once a WONID has been generated, the player can connect to the Half-Life
server of their choice.

Unfortunately, using the WONIDs as a means of identifying unique players
proved insufficient. We observed a large number of duplicate WONIDs, indicated
by simultaneous use of the same WONID, or players with the same WONID
connecting from highly geographically dispersed locations. This duplication of
WONIDs is probably due to the sharing of license keys or the use of pirate
copies of the game, and so the same WONID can represent more than one
user. This situation is exacerbated because the game server program does not
reject multiple users with the same WONID from playing simultaneously (this
occurred 493 times during the period of this study). In addition, on two occasions
the WON Authentication Server seemed to malfunction, issuing all users with a
WONID of 0. Although it would have been possible to modify the server to reject
simultaneous duplicate WONIDs, this would not resolve the problem of different
players connecting at different times with the same WONID, and so we needed
to try and determine which sessions belonged to which different individuals.

The identifying information logged by the server for each player is the player’s
WONID, their IP address and port number, and the nickname that they choose



to use in the game. Of the 14776 total WONIDs that we observed, 11612 had
unique (WONID, nickname, IP address, port) tuples; we can be reasonably sure
that each of these represents one unique user. Of the remaining WONIDs, we had
to make some assumptions about users in order to determine their uniqueness.
We assume that a unique (WONID nickname) tuple across all sessions is a sin-
gle user, and probably has a dynamically-assigned IP address or multiple access
ISPs. Users tend to change their names quite often, both between and during
sessions, and by looking at all the names used by a particular WONID and look-
ing for common names it was possible to further isolate potential unique users.
When multiple users with the same WONID were simultaneously connected we
assume that these represent different players. Using these heuristics, we estimate
that the 14776 WONIDs actually represent 16969 users.

3.2 Measuring delay

To measure the delay observed by each player we used the game server’s built-
in facilities. The server was set up to log the application-level round-trip delay
every 30 seconds. Of the total 1314007 measurements, we removed the 16306
with a value of 0, assuming that they are errors. We also saw 10592 measure-
ments greater than 1000ms, with a maximum of 119043ms. We remove these
measurements, also assuming that they are errors, since it is unlikely that any
user would be able to play a networked game effectively with a 2 minute delay.
Moreover, a similar FPS game, Quake III Arena, also assumes that client delays
over 1000ms are errors, but chooses not to report them to users, and so we do
the same here.

We did not measure network-level delay, e.g. through ICMP pings, since
one of our experimental design criteria was that we did not want to alter the
server in any way, or send additional traffic to players, in case this altered player
behaviour or deterred some potential players from connecting to the server.
With over 15,000 other potential servers to choose from, we did not wish to alter
conditions in such a way that players might be driven elsewhere. In any case,
it is the application-level delay which the users themselves observe and thus
one would expect that this would have a greater effect on their behaviour than
network-level delay. Informal testing showed us that on a lightly-loaded client,
the delays reported by Half-Life are within 5ms of a network-level ping, but,
unsurprisingly, this difference rises with client and server load. Unfortunately,
without access to the source code of the game, we cannot be sure what causes
the erroneous (> 1000ms) delays.

Although Half-Life does include features for refusing players admission de-
pending on their delay, and for compensating for variations in player delays [3],
these were disabled on our test server, since these might influence any results
concerning relative delays.

In addition to measuring the application-level delay, we also performed a
whois lookup on players’ IP addresses in order to obtain some indication of their
area of origin. Further details of the methodology and results of this analysis,



and anonymised versions of the server logs, can be found at the author’s webpage
(http://www.cs.ucl.ac.uk/staff/T.Henderson).

4 Results

Our main results can be summarised as follows:

— There is a wide distribution in players’ average delay, with over 40% of
players experiencing delays of over 225ms.

— Delay does not appear to play a part in a player’s decision to return to the
server, or to stay on the server.

— Most players connect during 1800-2400, according to their respective time-
zones.

— There is some correlation between a player’s ability and their delay and

session duration.

Social bonds do not appear to have an effect on player behaviour.

4.1 Absolute delay

Distribution of average delay for all users
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Fig. 1. Distribution of players’ average delay

Figure 1 shows the distribution of the average delay observed over the du-
ration of each player’s session. The largest proportion of players appear to have
delays of between 50 and 300ms, while 95% of players have delays under 533ms
(Table 2). The large number of users with high delays of over 225ms is interest-
ing since gameplay should theoretically be quite difficult at this level. However,
Figure 1 also includes the delays of “tourists”; those players who connect to a
server, examine the status of the game and then choose to leave. Figure 2(a)
shows the distribution of delay for all the players compared to those who stay
less than a minute, and those who stay more than 10 minutes and 1 hour. It can



be seen that the delay of those players who stay less than a minute is generally
higher than those who stay for longer. A player with a delay of over 400ms is
2.68 times as likely to stay for less than one minute. This implies that delay is
a determinant in a player’s decision to join a server; players with high delays to
a particular server will look elsewhere.

If, however, 100-225ms represents the upper delay bounds for interaction,
then we would expect that most of the players with delay above this level would
choose other servers. Yet 40.56% of the players who stay for more than one
minute, have average delays of over 225ms, and there is no significant difference
in the duration of players with delays over 225ms.
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Fig. 2. Kernel density functions of delay distribution

We define regular players as those who played more than 10 times and whose
average session duration exceeded one minute. There were 279 such players.
Figure 2(b) indicates that the repeat players’ mean delay tends to be lower, but
this is statistically insignificant at a 5% confidence level.

Players |Mean delay (ms)|95th percentile
All 232 533
Regular (176 424
Tourists|339 733

Table 2. Overall delay results



4.2 Relative delay

Absolute delay bounds might not be that important because players become
accustomed to high delays, or they have no choice because they happen to have
poor network connectivity. A more important delay metric might be the relative
delay between players. If one player has a much lower delay than the other
players in the game, they might be able to exploit this advantage, by attacking
players before they are able to respond.

We measure the relative delay in two ways. First, we look at the nominal
results and calculate the standard deviation of players’ delay to give an estimate
of range. Secondly, we analyse the ordinal data and look at a player’s rank in
terms of delay compared to the other players.

For most of the time, there is a deviation of around 100ms between players
(Figure 3). This seems reasonable, given that most players’ delay is in the region
of 100-200ms.

Standard deviation of delay for player duration >= 1min
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Fig. 3. Distribution of standard deviation of delay

The “delay rank” of a particular player was calculated by ordering the players
at each delay measurement period by delay to produce a rank r, and then scaling
the number of players n against the potential maximum number of players of 24,
i.e. rx24/n. Thus, the player with the highest delay would always receive a delay
rank of 24, whereas the minimum possible score of 1 would only be possible if
the player had the lowest delay and there were 24 players on the server. Figure 4
indicates some correlation between the delay ranks; players who leave tend to
have a higher rank.

4.3 Leaving a game

If delay is a determinant of user behaviour, then one might expect to see a change
in delay towards the end of a user’s session. A sudden increase in delay might
lead a user to leave the server and connect to another one, or give up playing



Delay ranking of players with duration <= 1min Delay ranking of players with duration >= 1hr

400
)
100 120 140
|
]
[
]

300
L

200
L
80
L

Frequency
Frequency

100
L
40
L

20
L

e e -
5 10 15 20 5 10 15 20

Rank Rank

0
L

(a) Delay ranks where player (b) Delay ranks where player
duration < 1min duration > lhr

Fig. 4. Relative delay ranks

altogether. We see little evidence for this hypothesis, however. Figure 5(a) shows
the “exit delay” (the delay over the last 5% of a player’s session) compared to
the average delay over the length of the session. This ratio congregates around
the value of 1; i.e., the exit delay is usually comparable to the average delay.

Relative delay does not seem to be a determinant of tourists leaving the
server, either. Figure 5(b) shows the ratio of the delay of those tourists who join
and leave the server, compared to the delay of the players already on the server.
The mean is 1.618, and there is no correlation between the two.

4.4 'When do players play?

Figure 6(a) shows the average number of players for each day of the week, sam-
pled every thirty minutes. There is a strong time-of-day component, which agrees
with our previously-observed results [7]. This is perhaps surprising given that
players come from areas with different time zones; Figure 6(b) shows the num-
ber of players from Europe and North America (determined from the whois
database). The offset in the respective peak times is probably due to time zones.
Unsurprisingly, the peak usage times are in the late evening, from around 1800
to 2400. If users tend to play in their spare time, then perhaps they have already
allocated this time for gameplay, and so are willing to put up with whatever
network conditions they happen to experience.

4.5 Player skill

A player’s ability might have an effect on the delay that they can tolerate. A user
who is highly skilled at playing the game might be able to cope with higher delays
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than beginners, since they might be able to predict other player’s behaviour and
thus compensate for higher-than-average lag. In human factors terms, a high level
of skill might lead to players being able to perform actions without conscious
awareness — in other words, playing the game becomes automatic.

The session-level logs include details of which players killed each other, and
with which particular weapon. Using this information it is possible to estimate
of the skill of each player. Whenever a kill takes place, we calculate the players’
skill using the following formula:

Sk =Sk + Sk/Sa* W;Sq = Sq — Sk [Sa x W

where s; = killer’s skill, s4 = killed player’s skill, and w is an adjustment for
the weapon used (e.g., it is harder to kill with a crowbar than a machine gun).

Using this metric, we see no correlation between skill and delay, nor skill and
the duration of a player’s game. We see some positive correlation (R = 0.378)
between session duration and skill, so the more expert players do tend to stay
longer. There is a slight negative correlation (R = —0.231) between skill and
delay, so a lower delay may lead to improved performance.

4.6 Social bonds

Figure 2(b) indicates the presence of certain players who had excessively high
delays, yet kept returning to the server. Here we analyse some of these players
in more detail to see if it is possible to determine why they keep coming back.
Table 3 shows some of these players’ statistics.
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™W 10 423 533 390 1460

TH 38 794 953 2319 10418

KR 14 340 389 2477 10043

™ 15 554 771 665 1659

KR 13 339 362 970 2553

Table 3. Detailed statistics for regular players with high delays

One possibility is that these players are returning to the server because of
friends who are also playing. However, of the 283 other players who were on the
server at the same time as these five players, only 33 players appear twice and
one appears three times. It is therefore unlikely that repeat visits or social bonds
were the reason for these players returning.

5 Conclusions, caveats and future work

This study has looked at the effects of delay on user dynamics on a multiplayer
games server. We find that application-level delay does not appear to have a
significant effect on a user’s behaviour once they have chosen to connect to a
games server. Although the majority of users have delays within the bounds
predicted by previous VR and DIS studies, changes in this delay do not seem to
lead to players aborting the game.

Although brief and still at an interim stage, this study has raised a number
of interesting research questions. If users are concerned with relative delay, is
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it possible to design efficient algorithms for determining the server with the
smallest standard deviation in delay given a group of prospective users? There
is currently a lot of interest in optimal placement of web and mirror servers
e.g. [12] and perhaps this could be extended to locating game servers.

That games players might be unaffected by sudden changes in delay has
important implications for designing potential congestion control schemes for
games. In particular, pricing schemes that depend on users adapting to network
conditions because of price changes might be less practical. If users tend to
remain in a game for an exogenously determined duration, then session-based
pricing or reservations might make more sense from a user’s perspective. Pricing
schemes for games could be designed to adapt the network to the user (who has
already committed to playing a game), rather than the other way around.

Usability studies of multiplayer networked FPS games, e.g. a GOMS (Goals,
Operators, Methods and Selection) analysis such as that performed in [9], might
help to explain some of the results we have seen, since simple correlations of kills
and deaths appear to be insufficient. More elaborate skill metrics, e.g. taking into
account the amount of time between deaths, might also prove fruitful.

As our results are only from the study of a single Half-Life server, which
may not be representative of servers across the Internet as a whole, we intend
to investigate lightweight methods for instrumenting larger numbers of servers
for future data collection. In spite of these limitations, this study has provided
us with some direction for future experimental work. This study has only been
correlational — we have examined and attempted to interpret results from an
unmodified server. In future work we intend to run multiple servers, modifying
variables such as network delay and jitter, and simulating different congestion



control and QoS policies, to further investigate their effects on user behaviour.
We expect to find our study corroborated by this further study.
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