
Observations on game server discovery mechanisms

Tristan Henderson
∗

Department of Computer Science
University College London

Gower Street
London WC1E 6BT, UK

T.Henderson@cs.ucl.ac.uk

ABSTRACT
Networked First Person Shooter (FPS) games are amongst
the most popular multiuser applications on the Internet to-
day. At any given time, there are thousands of servers avail-
able to a potential player. We describe and analyse the
existing mechanisms for locating these game servers. The
mechanisms are found to be inefficient and do not scale well.
We propose and describe a distributed peer-to-peer server
discovery mechanism. This is a work in progress.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed
Systems—distributed applications

General Terms
Measurement

Keywords
games, measurement, discovery

1. INTRODUCTION
First person shooter (FPS) games such as Quake and Half-
Life represent one of the most popular multiuser applica-
tions on the Internet today. These games use a client-server
architecture, with a large number of servers each providing a
game for a relatively small number of players (typically there
are between 16-32 players). At any given time, there can be
several thousand servers available to a potential player. The
mechanisms for locating these servers are very basic and in-
efficient. In this paper we analyse the current mechanisms
for server discovery, and suggest some ways in which these
could be improved.

This paper is structured as follows. In Section 2 we describe
the existing methods of locating a game server. Section 3

∗Tristan Henderson is funded by an EPSRC CASE award
in conjunction with HP Labs.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that co pies are
not made or distributed for profit or commercial advantage and that cop ies
bear this notice and the full citation on the first page. To copy otherwise , to
republish, to post on servers or to redistribute to lists, requires prior s pecific
permission and/or a fee.
NetGames2002 April 16-17 2002, Braunschweig, Germany
Copyright 2002 ACM 1-58113-493-2/02/0004 ...$5.00

describes the queries that we have carried out to analyse the
performance of these existing mechanisms, and the results
of these queries. In Section 4 we propose and describe a dis-
tributed server discovery mechanism. Finally, in Section 5
we outline directions for future work.

2. EXISTING SERVER DISCOVERY
MECHANISMS

When a user decides to join an FPS game on the Internet,
they need to know the location of an appropriate game server
to which they can connect. This location comprises the IP
address and the port number on which a game server is run-
ning, and in this paper we will refer to this address/port pair
as a server address. This server address can be obtained
out-of-band, for example from a friend who is currently play-
ing in a session, or from prior knowledge, for instance if they
always tend to play on the same server. If no server ad-
dresses are known to the potential player, then the player
can query a server directory1 to obtain the location of a
suitable game server.

The server directory query mechanism for the game Half-
Life [20] operates as follows:

• When a game server starts running, it registers with
one or more server directories. The addresses of these
directories are discovered by the server operator out-
of-band and the server program is configured appro-
priately.

• A potential game player sends a 6 byte UDP packet
containing the character “e”, followed by a sequence
number indicating where in the list the server directory
should start returning addresses. For the initial query,
this number should be 0.

• The server directory responds with a UDP packet of up
to 1396 bytes long. This contains a one byte sequence
number, followed by a list of server addresses.

• If the sequence number returned by the server direc-
tory is non-zero, the client sends another query packet
to the server directory, this time including the returned

1In FPS games these are typically referred to as “master
servers” — however, to reduce confusion with the term
“game server”, we refer to the master server as a “server
directory” in this paper.

sequence number. The server directory then responds
with another list of server addresses, until the client
has received the entire list.

We have analysed several of the most popular FPS games:
Half-Life, Hexen, Heretic, QuakeWorld, Quake II, Quake III:
Arena, Return to Castle Wolfenstein, and Unreal: Tour-
nament. The general server discovery procedure described
above is the same for all of these FPS games, except that sev-
eral games do not transmit sequence numbers. This means
that in the event of packet loss, the entire list has to be
retransmitted, since UDP is being used. Half-Life also ap-
pears to be unique in that a client has to authenticate with
the server directory using a challenge-response system — ac-
cording to the game’s developers, this is intended to prevent
denial of service attacks [3].

Once the user has obtained this list of game servers, they
are then able to query each of the servers in the list until
they find a game that they would like to join. Most FPS
game servers offer a query mechanism whereby such details
as the number of players, the current game in progress, the
players’ scores and so on can be retrieved. This information
allows the player to decide whether or not to join a particular
server. Like the server directory query mechanism, the game
servers are queried using UDP.

3. ANALYSIS
We have written a set of Perl modules to query both the
game servers and server directories for the FPS games men-
tioned in the aforementioned list.

3.1 Methodology
The primary Half-Life server directories are those provided
by won.net, the “World Opponent Network”. There are
three such servers, half-life.east.won.net, half-life.

central.won.net and half-life.west.won.net, which are
designed to service the appropriate regions of the USA. Thus,
a player located in California can query half-life.west.

won.net and find all the game servers that wish to adver-
tise to players on the American west coast. In addition
to the primary server directories, we compiled a list of five
other server directories from various gaming websites. These
included server directories oriented towards non-American
players, and server directories run by individual game server
operators for their own purposes. Each of the server direc-
tories was queried four times a day for a month. For each
query, we recorded the list of game servers returned by the
server directory, and the number of times each server ap-
peared in the list. We also recorded the number of duplicate
packets sent by the server, and the number of retransmitted
packets (if any) required to be sent by the client (e.g., in
the event of packet loss or the server timing out). Having
obtained a list of all the available game servers, we then sent
a query packet to each server. Ten servers were queried at a
time, and a server was assumed to be inactive if no response
was received after ten seconds. From analysing network traf-
fic, we believe that this is how the Half-Life client operates.

3.2 Results
Table 1 lists a summary of our observations. We have iden-
tified several problems with the current server directory sys-

tem.

Single point of failure The most obvious problem with
a centralised server directory is that if that server is
down, then potential players are unable to find any
game servers. This was not a problem for the main
servers at won.net during our polling, and they were
always reachable. Some of the other, smaller, server
directories, however, were frequently inactive. This
reachability problem is compounded in Half-Life, since
players also have to identify themselves with a cen-
tralised authentication server before they can connect
to a game server. On the other hand, one advantage
of a single, central server is that it is easy to charge for
access to that information, and some companies, e.g.
GameSpy [9] have set up their own server directories
to do so.

Information is stale The list of server addresses that is
returned by the server directories does not appear to
be very reliable, and on average, only 31.32% of the
game servers advertised by the server directory were
found to be active. This might be due to a number of
factors. Many servers are run by residential users, who
many have dynamically allocated IP addresses. Such
residential servers are also more likely to be behind a
NAT, which, in the event of a server restart or crash,
may increment the port number used by the server.
Thus, a server address might not be very permanent,
and so might have changed before the server has been
able to update its index. Since, however, each server
has to re-register with the server directory every three
minutes, this should eliminate many of the stale server
addresses, and so it is likely that there is a bug in the
server directory program.

Information is redundant As we have already mentioned,
won.net provides three server directories to service the
relevant regions of the USA. However, of these three
server directories, 87.77% of the total set of servers
observed appeared in all three server directory lists.
In other words, most server operators tend to register
with all three server directories. Whilst redundancy
can be seen as a benefit, for instance to increase re-
silience and avoid the problems associated with a sin-
gle point of failure, in this case it only creates addi-
tional problems. All three won.net servers appear
to be on the same subnet, and so it is likely that a
connectivity failure would result in all three servers
being unavailable. Since most servers advertise on all
three server directories, the geographic relevance im-
plied in the server names becomes ineffective. A player
located in the western part of the USA cannot trust
that all the servers on half-life.west.won.net are
located near to them. Thus, the outcome is that a
player may have to query all three server directories in
order to get an overall picture of the servers available
to them. Some clients do not allow users to specify
which server directory they wish to contact (for in-
stance, making assumptions about location based on
hostname and automatically contacting the “closest”
server directory), and this may make any search results
even less reliable.

Table 1: Summary of observations

Min Max Mean Median
Number of advertised servers 7984 20930 18891.10 18789

Number of active servers 2458 7588 5659.08 5804
Active servers (as % of advertised) 16.32 72.19 30.21 30.71

Time taken for query (seconds) 310 676 656.45 670

There is also some redundant information within a sin-
gle server. On average, 4.4% of the servers on each of
the won.net server directories is listed more than once.
We suspect that this is also due to a bug in the server
directory program.

Affected by network conditions Since all of the server
queries use UDP, none of the congestion control mech-
anisms associated with TCP are available to the servers.
Thus, an important issue is how well the server direc-
tories can deal with adverse network conditions. The
server directory lists at the main won.net servers com-
prised an average of 115.82 Kb of data, which was
transmitted in an average of 86.39 packets (since UDP
is used, path MTU discovery [12] is difficult, and thus
the server directory always sends packets of 1396 bytes
in size). Whilst we rarely saw loss in our observations,
when there was loss, the loss rate was quite high —
an average of 15 packets or 17.36%. This is because
the clients do not back-off; instead, they request the
packets which have been lost at a constant rate, aggra-
vating the conditions which are causing the existing
packet loss.

No standardised interface The server directory mecha-
nism that we analyse here is the default method for
advertising the presence of a Half-Life server. By this
we mean that this mechanism is built into the server
program itself, and no additional software is required
for a game server operator to advertise with the server
directory. We have found, however, that game server
operators have also chosen to use several other mech-
anisms. Several operators advertise their servers on
their WWW pages, for example. Others allow users
to finger their servers to query availability. These
other interfaces may have been implemented to draw
attention to other information, such as advertising and
so on, or perhaps due to the unreliable nature of the
server directory mechanism. Whilst this is not a design
problem per se, a more reliable server discovery mech-
anism that was standardised for a number of games,
might reduce this variation in interfaces. Some server
directory operators have already taken matters into
their own hands, and have chosen to use the same
server directory program for a variety of games, such
that some Half-Life server directories do not respond
to a Half-Life server query, but do respond to a Quake
III query.

One size fits all The server directory returns a list of all
the servers that have chosen to register with it. As
we have already mentioned, a server is free to regis-
ter with as many server directories as they wish. The
list returned by the server directory only contains raw
server addresses, and a prospective player then has to

query all the servers in turn, since there is no addi-
tional information about the servers by which to filter
and indicate interest. This query process can there-
fore take a long time, since a client might be querying
servers on the other side of the world to which they
have no intention of connecting. In our observations
the queries took an average of almost 11 minutes.

4. A PEER-TO-PEER SERVER DISCOVERY
SYSTEM

The server directory mechanism that we have described here
is very similar to the original Napster peer-to-peer file shar-
ing system. A client who wishes to retrieve a given file
song.mp3 from the Napster system connects to a central
Napster server, typically the main server at http://www.
napster.com. After authentication, the client uploads a list
of files that they wish to share with the other users of the
system. The central server updates the index, and the client
can then query the server, which responds with a list of IP
addresses of the Napster clients that have song.mp3 avail-
able for download. The client then chooses one of these
IP addresses and connects directly to that peer to retrieve
song.mp3. The central Napster server is thus almost iden-
tical to the game server directory — they both maintain a
central index which is used by all the Napster clients, or
game servers.

Given the similarities between server directories and Nap-
ster, we believe that it is beneficial to learn from the research
in peer-to-peer networking when developing new server dis-
covery mechanisms. Partly as a result of the success of
systems such as Napster, KaZaA and Gnutella, peer-to-
peer networks have become a highly active area of research.
Many of the current systems, however, such as Chord [19]
and CAN [15] assume that there is a single instance of each
datum in the network. In the Freenet network [4], for in-
stance, search queries pass from node to node until the first
successful response is received, and then the data is passed
back to the querier. The same function is used for searching
and inserting, and an insert can only take place if a search
proves unsuccessful. It is therefore impossible to have more
than one copy of each piece of data, and indeed this is a
design feature, since it prevents a document from being re-
tracted or deleted by overwriting it. Systems which do allow
multiple copies of data, such as application-level anycast [7],
often assume that only one copy, such as the closest or most
responsive, is required by the client requesting the data.
Other systems such as the Eternity service [2] and Pub-
lius [22] also allow multiple copies of data for resistance to
censorship, but again each copy is identical. These systems
are not really suited to discovering game servers, where a list
of positive query results is required, from which the client
can make a decision which might be based on non-network

C

G

G

G

G

G

C C
C

C

C

C

C

C

C

C

C

C
C

C

1

2

3

4

5

P

JOIN

Figure 1: Locating and selecting a game server

factors, such as who else is playing on the server. In a server
discovery system, the aim is therefore not just a lookup, but
a pair of goals: to obtain a list of server locations, and then
to select the best location from that list.

Decentralised systems where multiple resources can be lo-
cated, however, do exist, and have done for some time, for
instance the Grapevine system [18], and more recent gossip-
based systems such as Captain Cook [21]. Gossip-based sys-
tems are analogous to an epidemic [5]. Nodes randomly
choose other nodes to “gossip” with, that is, to spread in-
formation to, such as a query or a database update.

We are currently designing a distributed game server dis-
covery system. The system takes advantage of the existing
game servers and the players that connect to these servers,
and use these as the nodes in an application-level network.
Figure 1 shows the general idea of our system. Each game
server caches the addresses of the players who have most re-
cently played on it, and each player caches the addresses of
the servers on which it has most recently played. A poten-
tial player who wishes to find a server then sends a “gossip”
message to one of the servers in its cache. That server then
relays the message to the players in its cache, who then relay
onto the servers in their caches, and so on. At each addi-
tional hop, if suitable servers are found, their addresses are
relayed back to the original querier. Each new server address
is queried, and once a suitable server has been found, the
player connects to that server and the “gossip” terminates.
In Figure 1 the potential player P sends a message to G1.
Messages pass via the various clients (marked C) from G2

to G4, until finally G5 is reached. P finds G5 suitable, and
so connects to it.

The advantage of a distributed discovery system is that it
can resolve some of the problems described in section 3.2.
A decentralised system has no single point of failure. By

querying a server that has been recently used, a player is
more likely to receive results from the servers closer to them,
and so the problem of querying distant servers is eliminated.
Furthermore, by caching previously used servers and players,
users are more likely to connect to servers to which they have
some sort of social bond; for instance, where their friends
are playing, which is a phenomenon which we have already
observed in practice [10]. This may be especially important
in team-based games such as the highly popular Half-Life
modification CounterStrike [11].

4.1 Potential problems
There are many issues that need to be considered when de-
signing any peer-to-peer system. The “tragedy of the com-
mons” has been observed in peer-to-peer systems [1, 17] —
users are quite happy to take information from others, but
are not always so happy to share data. In a server discovery
context, a user might not be willing to indicate which servers
they have played on. This would greatly affect the efficiency
of the system as a whole. However, because of the multiuser
nature of an FPS application, it should be easy to discover
misbehaving nodes, since they will be visible to other play-
ers. This information could be used to enforce sharing, such
as in the DirectConnect file-sharing network [6], and users
who refuse to route server queries could be banned from
joining servers in the same way that players who currently
cheat in games tend to be banned.

One common problem in decentralised resource location sys-
tems is keeping the data store of location information cur-
rent, and maintaining consistency between nodes. If, how-
ever, players tend to connect to servers closest to them, keep-
ing a global database might not be required. Instead, it is
only necessary to ensure that the location data concerning
the nearest servers is current. This will be dependent on
how active the nearby players are.

The scalability of a system where each node passes on suc-
cessful queries, as well as initiating further queries, might
be limited. Indeed, the lack of a scalable query mechanism
has been one of the large stumbling blocks for the Gnutella
file-sharing network [16].

Perhaps the most difficult problem for peer-to-peer networks
to overcome is how to bootstrap a system. How does a new
node enter the system, and how do you find out where the
other nodes are? We envisage that our system will be used
in conjunction with the existing server directory mechanism,
and a new player who has never played the game before can
either query the server directory, find a node out-of-band, or
start their own server. Host caches, such as in the Gnutella
network, where popular and relatively permanent nodes are
listed on websites, are another possible solution. Unfortu-
nately, all these measures bring some element of centrali-
sation to the decentralised network, but we do not know of
any peer-to-peer system that has yet to satisfactorily resolve
this issue.

5. CONCLUSIONS AND FUTURE WORK
The client-server architecture is currently the most popular
choice for implementing multiplayer networked first person
shooter games. This is unlikely to change in the near future,
since games developers appear to prefer a central server due
to advantages such as ease of programming [8, 13]. Using a
client-server architecture for small-scale games such as First
Person Shooters will thus lead to a proliferation of servers
for players to choose from. This paper has described and
analysed the existing mechanisms for discovering FPS game
servers on the Internet.

Programming bugs aside, many of the problems that we have
found can be attributed to the choice of UDP as a transport
protocol. According to games developers, UDP was chosen
because of the overhead of creating connections in TCP [3].
As can be expected, however, the unreliable nature of UDP
and created its own problems, which we have described here.
Games developers might thus wish to consider the use of
TCP in future games for non-realtime communication such
as server discovery.

As an alternative to the centralised server directory, we have
outlined our plans for a distributed peer-to-peer discovery
mechanism. Much design work is required before we can
implement the system. We have indicated some of the po-
tential problems with our system, and we hope to discuss
these and other aspects at the workshop.

The experiments that we have described here are limited in
that they originated from a single site at UCL. We hope to
replicate the queries from multiple sites in the future.

The efficiency of a distributed discovery mechanism will be
greatly impacted by the longevity of the games servers - if
their addresses and lifespan are highly variable, it will be
difficult to discover them through distributed means. We
intend to run some server polls to estimate the lifespan of
existing Half-Life servers.

6. ACKNOWLEDGEMENTS

Thanks to Jon Crowcroft and the reviewers for their many
useful comments. Steve Jankowski’s QStat tool [14] was
invaluable in understanding some of the inner workings of
game server query protocols.

7. REFERENCES
[1] E. Adar and B. A. Huberman. Free Riding on

Gnutella. First Monday, 5(10), Oct. 2000.

[2] R. Anderson. The Eternity service. In Proceedings of
Pragocrypt ’96, pages 242–252, Prague, Czech
Republic, Sept. 1996.

[3] Y. W. Bernier. Half-Life and TeamFortress
networking: Closing the loop on scalable network
gaming backend services. In Proceedings of the 14th
Games Developers Conference, San Jose, CA, Mar.
2000.

[4] I. Clarke, O. Sandberg, B. Wiley, and T. W. Hong.
Freenet: A distributed anonymous information storage
and retrieval system. In Proceedings of the
International Workshop on Design Issues in
Anonymity and Unobservability, Berkeley, CA, July
2000.

[5] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinchart, and D. Terry.
Epidemic algorithms for replicated database
maintenance. In Proceedings of the Sixth Annual ACM
Symposium on Principles of distributed computing,
pages 1–12, Vancouver, Canada, Aug. 1987.

[6] Direct Connect file-sharing network.
http://www.neo-modus.com.

[7] Z.-M. Fei, S. Bhattacharjee, E. W. Zegura, and
M. Ammar. A novel server selection technique for
improving the response time of a replicated service. In
Proceedings of the 17th IEEE Conference on
Computer Communications (INFOCOM), pages
783–791, San Francisco, CA, Mar. 1998.

[8] T. Funkhouser. Network topologies for scalable
multi-user virtual environments. In Proceedings of the
Virtual Reality Annual International Symposium 1996
(VRAIS ’96), pages 222–229, Santa Clara, CA, Apr.
1996.

[9] GameSpy. http://www.gamespy3d.com.

[10] T. Henderson. Latency and user behaviour on a
multiplayer game server. In Proceedings of the 3rd
International Workshop on Networked Group
Communication (NGC), pages 1–13, London, UK,
Nov. 2001.

[11] T. Manninen. Virtual Team Interactions in Networked
Multimedia Games — Case: “Counter-Strike” —
Multi-player 3D Action Game. In Proceedings of the
4th Annual International Workshop on Presence
(PRESENCE 2001), Philadephia, PA, May 2001.

[12] J. Mogul and S. Deering. Path MTU Discovery, Nov.
1990. RFC 1191.

[13] Y.-S. Ng. Internet game design. Gamasutra, Aug. 01,
1997. http:

//www.gamasutra.com/features/19970801/ng.htm.

[14] QStat. http://www.qstat.org.

[15] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM 2001, pages 161–172,
San Diego, CA, Aug. 2001.

[16] J. Ritter. Why Gnutella Can’t Scale. No, Really.,
2001. http:

//www.darkridge.com/~jpr5/doc/gnutella.html.

[17] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
measurement study of peer-to-peer file sharing
systems. In Proceedings of Multimedia Computing and
Networking 2002 (MMCN ’02), San Jose, CA, Jan.
2002.

[18] M. D. Schroeder, A. D. Birrell, and R. M. Needham.
Experience with Grapevine: The growth of a

distributed system. ACM Transactions on Computer
Systems, 2(1):3–23, Feb. 1984.

[19] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: a scalable peer-to-peer
lookup service for Internet applications. In Proceedings
of ACM SIGCOMM 2001, pages 149–160, San Diego,
CA, Aug. 2001.

[20] Valve Software. Half-Life.
http://www.sierrastudios.com/games/half-life/.

[21] R. van Renesse. Scalable and secure resource location.
In Proceedings of the 33rd Hawaii International
Conference on System Sciences, pages 1209–1218,
Maui, HI, Jan. 2000.

[22] M. Waldman, A. D. Rubin, and L. F. Cranor. Publius:
a robust, tamper-evident, censorship-resistant, web
publishing system. In Proceedings of the 9th USENIX
Security Symposium, pages 59–72, Denver, CO, Aug.
2000.

