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Abstract

Many enterprises deploy 802.11 wireless networks for mission-critical operations; these networks must be protected for
dependable access. This paper introduces the MAP project, which includes a scalable 802.11 measurement system that
can provide continuous monitoring of wireless traffic to quickly identify threats and attacks. We discuss the MAP system
architecture, design decisions, and evaluation results from a real testbed.

1 Introduction

As individuals and enterprises increasingly depend on 802.11 wireless LANs for mission-critical applications, in particular
time-sensitive applications such as voice and video, the need to detect malicious attacks and protect legitimate users becomes
even more important. (See the sidebar.) Detecting 802.11 attacks, however, requires measurement at the Media Access
Control (MAC) layer, which in turn requires radios that can hear the management and control frames that govern the MAC
protocol. Deploying measurement software within 802.11 Access Points (APs) is difficult because most such devices are
closed “black boxes,” are typically locked to a specific channel (whereas attacks may be found on other channels), and
have processors that are too limited to capture or analyze all traffic while simultaneously performing their primary function.
Moreover, APs may not hear attackers located near the edge of their coverage area, even though those attacks may affect
clients within range of the AP. Although some vendors’ APs do periodically switch channels to listen for attacks on those
channels, the small amount of time spent on alternate channels limits their ability to catch all but the most aggressive attackers.

Deploying dedicated wireless measurement devices, which we call “sniffers” or “air monitors” (AMs), allows network
administrators to listen for attacks in a broader variety of locations and on more channels than is possible with AP-based
approaches. It is feasible to cover a large enterprise with dedicated AMs, which could be inexpensive $200 embedded
devices or even $30 USB dongles attached to existing office PCs, as proposed by DAIR [1]. It remains, however, a significant
challenge to build a scalable system for monitoring a wireless network using distributed sniffers. There are two important
issues to be considered:

• The unlicensed bands used for 802.11 networks have multiple channels, and a single-radio AM can only listen to one
channel at any time— it may miss an attack on other channels. One could attach multiple radios to one device, or place
multiple single-radio devices at one location. Either way, the hardware required is bulky or prohibitively expensive.

• For many 802.11 MAC-layer attacks it is important to capture a complete, coherent stream of frames to detect the
attack. An AM, however, can only capture frames within its sniffing range, and may miss some transmitted frames
when the network is congested. A system that cannot capture most or all attack frames may be less able to detect
certain classes of attacks.
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In this paper, we describe the “MAP” (Measure, Analyze, Protect) system for monitoring and analyzing wireless traffic
on or near a campus-scale wireless network. The MAP architecture includes a distributed set of dedicated sniffers (AMs);
to address the challenge of multi-channel monitoring, MAP AMs periodically change the channel on which the radio is
capturing traffic. We call this technique channel sampling, as it results in the collection of only a sample of the frames
passing through all the channels. This sampling approach may be sufficient, for example, for a system administrator or
anomaly detection module to observe some unusual behavior in the network. Once an anomaly is detected, however, the
administrator may require a more extensive traffic sample, or need to identify the location of an offending device. Therefore,
MAP allows measurement applications to dynamically modify the sampling strategy, refocusing the monitoring system to
pay more attention to some channels or certain types of traffic than others.

To address the aforementioned challenge of incomplete capture, AMs forward the captured frames to a merger, which
reconstructs a stream of frames in chronological order. Because neighboring AMs may hear the same transmitted frames, the
merger also removes duplicated frames. On the other hand, a frame missed by one AM may be captured by another AM, so
the merged frame stream often provides a more complete view and is more suitable for accurate traffic analysis and attack
detection.

Multiple MAP analysis detectors subscribe to this merged stream to identify possible threats, attacks, and performance
anomalies. Detectors then send alerts to a protection engine, which is capable of blacklisting offending stations by reconfig-
uring the wireless network firewall and displaying the analysis results to network administrators via a Web interface.

Merging sniffed frames from distributed AMs, however, raises scalability concerns on bandwidth usage and processing
power. To reduce bandwidth demand, MAP AMs extract only a small number of features from the overhead frames, rather
than the full frames. Since MAP uses a light-weight merging algorithm and the analysis detectors can run on separate
machines using a publish-subscribe model, MAP’s computational workload can easily be distributed and balanced to increase
scalability. Finally, we expect multiple MAP systems to be deployed for a large campus, probably with one to cover each
region. We have built a testbed with 20 AMs deployed in a single building, and the evaluation results show that MAP can
easily handle the workload with decent detection accuracy.

The primary contribution of this paper is the novel MAP architecture and its scalable support for live monitoring and
analysis of large wireless networks. We include a performance evaluation of MAP in a live testbed. We discuss the details of
individual MAP components, such as channel sampling strategies and attack detection algorithms, in previous papers [7, 8,
14, 16].

2 MAP Architecture

The architecture of the MAP system is shown in Figure 1. Briefly, the AMs capture wireless frames, extracting and
forwarding the desired frame features to the merger, which creates a unified stream on a coherent timeline. The analysis
engine includes plug-in detectors that analyze the traffic, producing alerts to the protection system and feedback to the
measurement system. The controller coordinates the AMs and modifies their behavior according to the feedback from the
analysis engine. The protection engine presents alerts to the system administrator and (in future work) takes autonomous
action to protect the network from the attacker.

2.1 Air monitors (and controller)

AMs are wireless sniffers that capture traffic from the 802.11 spectrum. In our deployment, we use dual-radio Aruba AP70
APs loaded with OpenWrt Linux1, although an AM could be built from any 802.11 NIC (Network Interface Controller) that
is capable of programmatic channel changes. (In our evaluation, we use only one of the AP70’s two radios.)

AM feature extraction. To reduce the volume of forwarded traffic while retaining the relevant information from each
individual frame, AMs forward information in a frame format that we call AMEX (for AM EXtractor). This format, a
domain-specific form of lossy compression, includes only the features of interest from the MAC header of each frame and
packs the features for several frames into each UDP datagram sent from the AM to the merger. We drop the frame contents,
including higher-layer headers.

Each AMEX frame also includes the timestamp and signal strength of the received 802.11 frame, and PHY-layer informa-
tion provided by the 802.11 driver (such as the rate). When multiple AMs hear the same 802.11 frame and forward it to the

1http://www.arubanetworks.com, http://www.openwrt.org
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merger, the merger combines information from redundant frames into a single AMEX frame that contains just one copy of
the extracted 802.11 features, together with the AM-specific data from all AMs.

This AMEX approach dramatically reduces bandwidth demands for communicating frames from the AMs to the merger.
Under normal load in our building, one day, AMEX reduced AM-merger traffic by 45.7%, even when we packed only one
AMEX frame per UDP datagram, and 66.2% when we packed multiple frames per datagram.

AM channel sampling. MAP needs to monitor all 802.11 channels (as many as 14 channels for 802.11b/g, and 23 channels
for 802.11a), as there may be attacks on any of them, even if the network infrastructure is using only a few channels. Our
AMs monitor multiple channels by periodically assigning the radio to each channel. We call this technique channel sampling,
as it collects only a sample of the frames passing through all the channels.

The simplest form of channel sampling, equal-time sampling, involves setting the radio to each channel in the wireless
network, in a predetermined order, and spending equal amounts of time on each. For many applications, however, the equal-
time approach may not match the application’s needs. In particular, we note that most applications are not interested in an
equal sample from each channel, or even a statistically representative sample across channels. Application semantics imply
that some channels are more “interesting” than others: for example, channels with more clients, with more traffic, or with
active VoIP flows.

In this paper, we consider two other sampling strategies, which adaptively spend more time on channels with higher traffic
load. We assume that each strategy rotates through all channels, and define a sampling strategy in terms of the amount of
time spent on each channel in each cycle, and how that time is adjusted in response to current conditions. 2

The proportional sampling strategy observes the number of frames per second on each channel, and uses the proportion
of traffic on each channel to determine the proportion of the next scanning cycle to spend on each channel [7].

We also consider coordinated sampling, in which the AMs’ individual sampling schedules are coordinated by a central
controller. Each AM chooses the amount of time to sample each channel, as before, in proportion to the amount of traffic on
each channel. However, based on statistics provided by the AMs, the central controller rotates the AMs’ schedule of channels
within each cycle to reduce the amount of time neighboring AMs spend on the same channel, thus reducing the amount of
redundant capture. Here, the semantics of applications like intrusion detection bias the capture toward the busier channels,
and away from redundant capture, in an effort to capture as many unique frames as possible. We provide the details of our
coordination mechanism in a recent paper [8]; our scheduler is fast and has low overhead, and its performance depends only
on the number of channels and AMs (not on the load of the AMs).

As an aside, we note that the coordinated sampling problem for AMs bears some resemblance to the channel-assignment
problem for APs, but there is a key difference. In channel assignment, the goal is to assign each AP to one of a small number
of channels (usually three or four non-overlapping channels), for a relatively long period of time (hours or days). In channel
sampling, each AM is assigned to every channel, in order, for a short period of time (milliseconds). Thus the solution space
is different.

Refocusing. The MAP measurement system is like a telescope, focused on a region of channel-space-time. MAP allows
analysis components to dynamically refocus the measurement system after observing anomalous behavior, by gathering more
frames from a client, AP, or region, or by extending the set of features collected about the traffic of interest. In case of an
ongoing attack, the higher-fidelity stream of frames may allow MAP to confirm the attack or locate the attacker.

Our current implementation can focus more attention on a given MAC address, by asking the relevant AMs to spend more
time on the channel where that MAC was recently observed. For example, if we wish to spend more time capturing frames
being sent from MAC address aa:bb:cc:dd:ee:ff to MAC address 11:bb:33:dd:55:ff, we need to direct the AMs to spend
more time capturing traffic on the channels that observe these MAC addresses in combination. The MAP system allows
such refocusing requests to take the form of predicates like “src == aa:bb:cc:dd:ee:ff && dst == 11:bb:33:dd:55:ff”. These
predicates are sent to the relevant AMs, which maintain per-channel-counters for the number of frames that match these
predicates. These counters are used to determine the proportion of time that an AM spends on each channel. We explore the
potential for refocusing in another paper [9].

2Due to the characteristics of our sniffer hardware, it is far more efficient to step through channels sequentially; switching from a high-numbered channel
to a low-numbered channel can take ten times as long. Thus, we do not consider strategies with random or other non-sequential channel orders.
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2.2 Merging

Our merger combines all AM traces to provide a coherent and complete view of the wireless traffic. There are two
challenges in merging: synchronization of the AMs’ clocks and identification and removal of redundantly-captured frames.

Synchronization and clock correction. We found that the standard Network Time Protocol (NTP) could not provide the
microsecond-scale synchronization required by the merger, so the merger tracks a clock correction variable for each AM,
adding it to the timestamp of each frame from that AM. The merger adjusts these corrections whenever it processes a beacon
frame observed by multiple AMs. The adjustments are calibrated so that the corrected timestamps for the beacon will be the
same on all AMs.

As frames from different AMs do not necessarily arrive at the merger in corrected-timestamp order, the merger must buffer
incoming frames for a period of time so that it can reorder them and identify duplicates. We recognize frames as duplicates
if they have a similar timestamp and the same frame check sequence (FCS).

2.3 Analysis engine

The MAP analysis engine is an open platform that can support multiple detectors, as shown in Figure 1. Currently we have
developed a Network Allocation Vector (NAV) attack detector, a spoofing attack detector [14], a rogue-AP detector [16], a
cheating attack detector, and a flood detector (such as the deauth/disassoc attack mentioned above). Since new attacks will
emerge in the future, we developed MAP’s analysis engine to allow easy integration of new detectors, coded in any language
and for any execution environment suitable for the task. MAP can run multiple detectors simultaneously, on the same
host or distributed to any available host, balancing the analysis load and enhancing scalability. To add a new detector, the
developer simply informs the detector of the network address of the merger (so the detector may subscribe to the merger’s
output stream), of the alert server (so the detector may publish any alerts), and of the controller (so the detector may send
refocusing requests).

Indeed, our framework allows one detector, which may be an anomaly detector, to launch a new instance of another
detector, which may be a specific signature detector, and to refocus the measurement system so the new detector can better
examine the suspicious traffic. Note that neither MAP nor its measurement system defines “suspicious;” it is up to the
detectors to define what frames are of interest, based on application semantics.

Detectors are not simply “clients” of the measurement system, but active components that can adjust measurement activity
according to the results of analysis. We use the deauth/disassoc detector here as an example to show how refocusing helps
the attack detection.

Deauthentication (deauth) and disassociation (disassoc) frames are two types of 802.11 management frames that can
terminate 802.11 authentication and association procedures respectively. By continuously sending spoofed deauth/disassoc
frames whose source MAC address is the AP and destination MAC address is the target, the attacker keeps the target trapped
in the authentication/association procedures and thus disrupts wireless connectivity between the target and the AP. Such an
attack can be a “flood” (> 10 frames per second (FPS)) or a “trickle” (otherwise).

The refocusing capability of the deauth/disassoc detector works as follows; our detector considers any deauth or disassoc
frame as “suspicious”. The detector monitors the frame type of each frame output by the merger. Once it finds an early
sign of an attack (a single deauth or disassoc frame), the detector sends a refocusing request to the controller. The controller
implements the request by instructing the AMs to spend more time on the channel where the attack occurred. The controller
assigns a ticket to this request and sends it back to the detector, which saves the ticket for future communications with the
controller. The detector also builds a profile, which includes source and destination MAC address, a counter, timestamps
for each suspicious frame, the refocusing ticket and two timers, tr and te, where tr records the time when the refocusing
request is over and te records the expiration time for monitoring the situation. Whenever the refocusing timer tr expires, and
te has not expired, the detector sends a renewal request to the controller. When a deauth or disassoc frame arrives with the
same addresses, te is extended and the counter is incremented. If this counter exceeds a predefined threshold, the detector
generates an alert message (containing the attack start time) to the alert server. If no more suspicious frames are heard when
te expires, the detector sends an alert message (containing the attack start time, end time, and other statistics) to the alert
server. The detector flags this attack as genuine if the number of suspicious frames was more than a predefined threshold;
otherwise it flags this attack as a false alarm. In either case, the detector sends a cancellation request to the controller.
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3 MAP Testbed and Evaluation

We deployed a 20-AM MAP system to monitor the production 802.11a/b/g network in our department, as shown in
Figure 2. This live testbed allows us to evaluate the effectiveness of MAP architecture, system scalability, and detection
accuracy in realistic settings.

We used Aruba AP70s as AMs, which have a 266MHz MIPS CPU, 32MB DRAM, two Atheros AR5212 802.11a/b/g
NICs, and two Ethernet NICs. We installed OpenWrt Linux (Kamikaze branch, r5494) and MadWifi (v0.9.2) on each, and a
copy of dingo, 3 our channel sampling software that sniffs through libpcap (v0.9.5). Dingo can sniff on both of the NICs, but
in our experiments it sniffed only one radio and only 802.11b/g, as our 802.11a network is in limited use. We connected all
the AMs to the merger through switched 100Mbps Ethernet, without routers in the middle.

Our merger, controller and analysis engine are running as user-level processes on one of two Linux (Fedora Core 6) servers
(2x3GHz Intel Xeon CPUs, 4GB RAM, 3.2TB RAID storage). Note that the merger and any post-merger MAP components
can run either on the same server or different ones. We configured them to run on the same server in most of our experiments.

Channel sampling. Before we look at attack detection, we set out to measure the long-term performance of channel
sampling. We deployed 18 AMs at six locations (marked “*” in Figure 2), three at each location, 0.5m apart. We divided AMs
into three groups, each group having one representative at each of the six locations. We configured each group with different
sampling strategies: 1) proportional, so each AM uses the proportional-sampling strategy independently; 2) coordinated, like
group 1 but under the coordination of a controller to reduce channel overlap; and 3) refocusing, like group 2 but allowing the
detector to send refocus requests to the AMs through the controller.

We monitored the production network for 24 hours. We launched no attacks, so we focus on results from the Proportional
and Coordinated strategies. We plot the AMs’ output and the merger’s output on each channel on a log scale in Figure 3.
The unit is FAMH, frames per AM per hour. On the horizontal axis the channels are arranged in descending order of FAMH
captured by the Coordinated group, on each channel. For each channel, the two bars represent the two sampling strategies.
The dark portion of the bars represent the FAMH after merging the traces. We also plot the redundancy rate of the two groups
as lines across the top.

From this plot we can see that the Coordinated group captured more frames on the busier channels, but was less effective at
capturing frames on the quieter channels. It did, as designed, capture fewer redundant frames on most channels; coordinating
the schedules of neighboring AMs therefore allowed MAP to use its resources (radio time) more efficiently. The Coordinated
group captured slightly more redundant frames on the busiest channel (channel 11), however. We speculate that the reason
for this difference, as well as coordinated sampling’s tendency to capture more frames on busy channels and fewer frames
on quieter channels relative to proportional sampling, is due to the responsiveness of their rescheduling operations. In these
experiments, the coordinated-sampling algorithm adjusted the channel-sampling schedule once every 2.2 seconds, and the
proportional-sampling algorithm adjusted once every 5.5 seconds; the Coordinated group thus reacted more quickly to shifts
in the traffic patterns and tended to spend more time on the busy channels.

We describe our coordination algorithm in more depth, and explore its value in small controlled studies, in an earlier
paper [8].

3.1 Effectiveness of attack detection

We first evaluate MAP’s attack detection effectiveness. We use two success metrics: a) the ability to capture attack frames,
measured by the ratio of attack frames captured by MAP to the total attack frames injected, and b) the detection rate, measured
as the fraction of successfully detected attacks to all launched attacks.

Although we evaluate MAP with only one attack scenario, this situation is representative of many other kinds of attacks
that depend on threshold-based detectors. Our results should be meaningful for any situation where the capture of more
frames leads to the capture of more attack frames and thus a higher likelihood of detecting the attack.

For these experiments, we set up an additional control AM (marked “C”) 2m from the attacker, fixed on the attacker’s
channel without any channel sampling or refocusing.

For each group, as well as the control AM, we ran separate instances of the merger, controller, and detectors simultane-
ously. We set up the deauth/disassoc detector to report an alert when it captured 3 deauth frames that are less than 6 seconds
apart from a MAC address. For the refocusing group, we configured the detector to request refocusing on the MAC address
at the moment it received the first deauth frame.

3A dingo is an Australian native dog renowned for its ability to track prey in bleak conditions.
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We set up an attacker (laptop) to launch deauth attacks, once per minute, against a pre-defined MAC address. We assume
that the attacker knows that MAP is in use, and understands the proportional-sampling strategy, and thus may attempt to
evade MAP detection by deliberately injecting heavy traffic to one channel and attacking another idle channel. We carried
out two sets of experiments: in one set the attack was on the busiest channel (channel 11 in our case), and in another set the
attack was on a quiet channel (channel 7, which had no production APs and thus almost no traffic).

We assume that the attack frames may arrive in a flood (high frame rate) or a trickle (low frame rate). Thus we varied the
injection rate of deauth frames at six different levels: 0.5, 1, 2, 5, 10 and 50 FPS. At each given frame rate, we repeated the
experiment 120 times, for 40 seconds each time. The two sets of experiments lasted for 24 hours.

Capturing attack frames. Figure 4 shows the percentage of captured attack frames under different frame injection rates.
The lower and upper error bars are the first quartile (which cuts off the lowest 25% of data) and third quartile (which cuts
off the highest 25% of data), respectively. Although there was substantial variance in some cases, the broad conclusions are
clear.

The attack occurred on channel 7 or channel 11. The reason we chose these two channels is that channel 7 was the quietest
channel, and channel 11 was the busiest channel in our environment. We wanted to compare how different sampling and
refocusing strategies affect the attack detection performance under different traffic environments. We only used the control
AM during the channel 11 experiment; since it was close to the attacker and stayed on the attack channel, it captured almost
100% of the attack frames. The most notable feature of this graph is that the Coordinated and Proportional groups were
poor at capturing attack frames when the attack occurred on a quiet channel (channel 7), because they focus attention on the
busier channels. On the other hand, the Refocusing group captured the most attack frames among the three channel-sampling
groups in most cases, because its focus was determined by an early indication of attack. The Coordinated and Proportional
groups had similar capture performance.

Rate of detection. Since the detector does not need to capture all attack frames to raise an alert, the rate of attack detection
(shown in Figure 5) for each group was much higher than the frame-capture rate. When the attacker targeted the busiest
channel, all three groups detected 100% of attacks, even for the subtlest trickle attacks. When the attacker targeted the quiet
channel 7, however, the Proportional and Coordinated groups were poor attack detectors unless the attacker injected 2 FPS
or more. The Refocusing group was consistently better than the other two groups. For the subtlest trickle attacks (0.5 FPS,
channel 7), the Refocusing group detected 72% attacks, which is 4.1 times higher than the Coordinated group (14%), and 6.2
times than the Proportional group (10%).

The detection and refocusing techniques we have demonstrated through the deauth/disassoc detector can be easily ex-
tended to other threshold-based detectors, such as the NAV attack detector. For these detectors, the more attack frames we
capture, the more effectively MAP can detect attacks. MAP successfully detected such attacks while channel sampling.
The analysis-driven refocusing feature was important for accurate detection. Readers are encouraged to refer to our earlier
papers for the details and evaluation of our other detectors: a rogue-AP detector [16] and a signal-strength based spoofing
detector [14].

3.2 System performance

Attack frames must be captured before the attacks can be detected. From the above results, effective frame capture is
clearly a critical metric. In this subsection we evaluate MAP’s capture capability, although due to space limitations we do not
present detailed plots or data.

Sniffing performance. We conducted a heavy traffic experiment on the testbed, with the 20 AMs deployed at the arrows
as in Figure 2. We used 8 wireless Linux PCs as traffic generators scattered on the three floors (not shown). On each AM we
measured the frames received by NIC, libpcap, and the dingo sniffer software. Our success metric for sniffing is the frame
drop rate, defined as the ratio of frames not received by the sniffer to the total frames that the NIC received, in each cycle of
channel sampling. The results show the drop rate was low (< 5%) when the interface received fewer than 1,000 FPS, but it
increased almost linearly to 23%, 50% and 74%, at 2,000, 2,600 and 3,200 FPS, respectively. With higher input rates, the
drop rate remained constant around 70-90% up to 5,000 FPS. Our results also show that libpcap captured almost all frames
(> 99%), but it dropped frames due to the limit of its internal buffer, implying that dingo’s ability to extract and forward
features (on these AMs) was about 1,000 FPS. This performance may be improved by increasing the buffer size in libpcap,
and by tuning dingo.
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Merging performance. We also measured the CPU load of the merger from our stress experiments, which is linear to
the system’s frames per hour (FPH), i.e., the average number of frames captured by all AMs in an hour. By simple linear
extrapolation, we expect that the merger (while using 50% CPU) has a throughput of approximately 31, 32, and 45 million
FPH when the rate of redundancy is about 10%, 20%, and 50% respectively.

AM-merger bandwidth. Bandwidth limitation is another major concern. The flow of AMEX frames from the AMs to
the merger may cause congestion; since this traffic is carried by UDP, there is some potential for loss. We disabled AMEX
aggregation, and forced the AMs to send one UDP datagram per captured frame. Our measurements show that the drop
rate remained relatively flat with no upward trend as the AMs’ output rate increased. Thus, up to the merger’s maximum
observed output frame rate (28M FPH), we were well within the capabilities of UDP over switched 100Mbps Ethernet. With
aggregation, packing multiple AMEX frames in each UDP packet, we expect to scale even further.

The average AMEX/UDP datagram size is 148 bytes, including headers, when carrying the full set of features from one
captured frame. (It would be smaller for analyses that choose only a subset of frame features.) The maximum throughput of
such a UDP stream is around 60M FPH [15]. The AMEX aggregation feature, however, dramatically reduces the number of
UDP datagrams by 95% (an average of about 21 frames per UDP datagram), while increasing the average datagram size to
about 1500 bytes. At such a packet size, a UDP stream can achieve more than 90 Mbps throughput on a 100Mbps switched
Ethernet. This increases the theoretical bound to 560M FPH. In our experiments (under coordinated sampling) we observed
an average of 0.4M frames per AM per hour. Thus, bandwidth should not be a bottleneck of MAP, even for over a thousand
AMs.

While our experimental results demonstrate that MAP is efficient and effective for our building-wide deployment, a single
merger clearly cannot scale to campus-wide deployments. Thus, we introduce the concept of merging regions. We assume that
in any large-scale 802.11 infrastructure (such as the Dartmouth campus), the wireless traffic is concentrated in geographically
distributed buildings, or groups of buildings. We envision that a MAP system groups all of the AMs in each building into one
merging region; each merging region includes one instance of the merger and analysis components.

4 Related Work

There are several existing systems that monitor WLANs (Table 1). Some of these systems focus on performance analysis
instead of security monitoring, such as Jigsaw [6] and WITS [12]. Like MAP, these systems merge sniffed frames from
distributed AMs for detailed analysis, but their AMs pay attention only to the channels of their APs, and so they do not
have mechanisms for channel sampling and refocusing, and offline analysis of captured network traffic is typically sufficient.
MAP, on the other hand, needs to perform online analysis to be able to rapidly respond to security violations. To compensate
for channel sampling, MAP employs refocusing to allow more fine-grained analysis on certain channels or types of traffic.
Most of these systems use dedicated AMs, while DAIR proposes to use USB wireless dongles attached to existing desktops
for reduced deployment cost [1]; MAP could do the same. To increase scalability, MAP AMs perform feature extraction
on captured frames to reduce bandwidth usage, while still allowing frame-level merging and analysis. Existing commercial
wireless intrusion detection systems (WIDS), such as AirMagnet, AirTight, and Network Chemistry, also consider channel
sampling for security monitoring but use only simple strategies, such as equal time per channel.

5 Conclusion

This paper introduces MAP, a system designed to capture wireless traffic over a broad area, merge frames captured by AMs
with overlapping coverage areas, and detect 802.11 MAC-layer attacks in real-time. We implemented the MAP system and
deployed it throughout our building. We measured the performance of MAP as it monitored daily traffic on our production
network under several different scenarios, sometimes injecting traffic or attacks to measure MAP’s performance. In earlier
papers we have explored the details of MAP’s channel-sampling methods. In this paper we describe the whole system and
explore its ability to detect attacks.

The MAP system makes several contributions: novel channel-sampling strategies, a flexible mechanism for “refocusing”
the attention of the measurement system to address changing needs of the analysis modules, a plug-in architecture for analysis
components, and a range of attack detectors.

We found that coordinated sampling reduced frame-capture redundancy, that refocusing was able to improve the effec-
tiveness of our attack detectors, and that performance was reasonable at the scale of a modest building. Although future
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experiments will be needed, we expect that MAP will scale to large buildings and then (with additional servers) to a campus
scale.
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Threats to 802.11 networks. The shared medium used in IEEE 802.11 wireless networks leads to many security risks, such
as those listed in the Wireless Vulnerabilities and Exploits database (http://www.wirelessve.org/). All of these
are threats to the “dependability” of the network, from the perspective of the user. We roughly categorize these threats as
follows.

1. Existing 802.11 security protocols, such as Wired Equivalent Privacy (WEP) and 802.11i, have several design flaws
that may lead to violations of message confidentiality and integrity [4], and DoS attacks against the security protocol
itself [11].

2. There are several ways to launch DoS attacks, beyond physical-layer jamming. Since 802.11 management and control
frames are not protected, an attacker may spoof deauthentication or disassociation frames to disrupt existing connec-
tions [2]. An attacker may also try to bring down the AP by exhausting its resources [3].

3. An attacker can exploit unsuspecting users for malicious purposes. For example, he may set up a “trojan” AP broad-
casting the same ESSID as the one used by legitimate networks; thus, a user may unknowingly associate with the fake
AP, which can either simply steal sensitive information or perform active man-in-the-middle attacks [10].

4. Violating enterprise network policies may leave backdoors open to an attacker. For example, an employee may connect
an unauthorized AP to corporate network for convenience, thus giving external attackers internal access if that AP is
not appropriately secured [16].

5. The wireless drivers on various platforms may have vulnerabilities that can be exploited by injecting malformed pack-
ets, so the target devices may crash or be taken over by the attacker [5].

6. Besides these external attacks, an insider with access may abuse the network to gain an unfair share of the wireless
bandwidth, by manipulating 802.11 MAC frames [13].

Existing 802.11 security protocols are not sufficient to prevent these attacks. Instead, MAC-layer wireless monitoring is
necessary for comprehensive attack detection, which is the focus of this paper. Here we assume that the attacker may be
able to inject frames on any channel at any time and with any desired field values. The attacker may move, during an attack,
changing channels or changing location.
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**
*

*
**

Figure 2. Testbed deployment in our CS department building. 19 Aruba AP52 APs (not shown) provide
802.11a/b/g service to over 80 faculty, students and staff members in about 1,600 square meters of
usable space. We deployed 20 Aruba AP70 air monitors (arrows) throughout. For some experiments,
we deployed sniffers at the "*" locations.
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Security Focus Air Monitor Feature Extraction Channel Sampling Refocusing Merging Online
MAP Yes [14, 16] Dedicated Yes Flexible strategies [7, 8] Yes [9] Yes Yes
DAIR [1] Partial Desktop plugin Yes No No No Yes
DOMINO [13] Yes Dedicated N/A No No No Yes
JIGSAW [6] No Dedicated Yes No No Yes Partial
WIT [12] No Dedicated No No No Yes No
WIDS (many) Yes Dedicated No Fixed strategies No No Yes

Table 1. Related wireless monitoring systems
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