Friend or Flood? Social prevention of flooding
attacks in mobile opportunistic networks

lain Parris and Tristan Henderson
School of Computer Science, University of St Andrews
St Andrews, Fife, KY16 9SX, UK
{isp3,tnhh} @st-andrews.ac.uk

Abstract—Opportunistic networks enable decentralised and
infrastructure-less social networking applications, through the
cooperation of peer mobile devices to forward messages on one
another’s behalf. The decentralised and cooperative nature of
these networks, however, introduces potential security threats.
For instance, malicious nodes may modify messages, or send
many messages in an attempt to drain other nodes’ resources
and thereby disrupt the network. Such attacks are well-studied
for wireless ad hoc networks, but may need reconsideration in
disconnected opportunistic networks.

In this paper we define a simple flooding attack that can
deny service in an opportunistic network. We simulate the
attack and demonstrate its efficacy using real-world datasets. We
furthermore develop a scheme for mitigating the attack, by using
the social relations between nodes. The scheme is lightweight,
requires only local knowledge to be stored by each node, and is
shown to be effective: for one dataset, the median proportion of
time spent offline by nodes was reduced from 42.7% to 6.3%.

I. INTRODUCTION

Mobile devices are increasingly carried by people through-
out their daily lives and used for applications beyond mere
voice calls. One popular use of mobile devices is to access
online social networks (OSNs), for example microblogging
on Twitter.! Current OSNs are normally accessed on mobile
devices via infrastructure networks such as cellphone towers
or Wi-Fi access points. But in infrastructure-less scenarios,
where infrastructure is unavailable or otherwise undesirable to
use (e.g., due to cost, or an inability to trust the infrastructure
such as in political uprisings), it is then not possible for mobile
users to access OSNs.

Opportunistic networks can enable communication in such
infrastructure-less scenarios, including the use of OSNs and
other social applications [15]. Peer mobile devices may di-
rectly exchange messages when in physical proximity, via a
wireless protocol such as Bluetooth, without requiring any
fixed infrastructure. If many such peer devices — acting as
network nodes — cooperate to carry each other’s messages,
then a decentralised opportunistic network is formed, in a dis-
connected store-carry-and-forward architecture. Routing and
forwarding in such networks is well-studied, but one area with
many remaining challenges is security [7]. The decentralised
and cooperative nature of such networks, where there may be
no traditional infrastructure, and where nodes are expected to
cooperate and forward data for each other, introduces many
new attack vectors and possibilities for malicious behaviour.

In this paper, we focus on one type of attack. Since it is
difficult to determine reliably the sender of a message in an
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opportunistic network, a malicious user can untraceably flood
the network with spoofed messages. As the available resources
of participating devices (e.g., battery, storage or bandwidth)
are finite, and may be drained by receiving and retransmitting
these messages, this flooding will act as a denial-of-service
attack against participating network nodes.

Our goal is to mitigate such a flooding attack, while
maintaining the utility of the opportunistic network. In short,
the core idea is for each message to be signed by the original
sender. Each message is then only retransmitted by the trusted
social contacts (“friends”) of its original sender. A friend will
retransmit only after checking the message signature to verify
that the message’s origin is their trusted friend. Such a defence
is lightweight, relying only on local knowledge at each node.

The contributions of this paper are to: (i) formalise a
flooding-based resource-consuming attack, and simulate the
efficacy of the attack using real-world traces; (ii) use social
network information to build a routing protocol using social
network information that is resistant to the attack; and (iii)
demonstrate through trace-driven simulation that the attack-
resistant protocol mitigates the attack, while at the same time
maintaining the utility of the network.

We next discuss related work, and present both the at-
tack and an attack-resistant routing scheme in Section III.
Sections IV and V evaluate the attack and attack-resistant
scheme. Finally we conclude by discussing the implications
and limitations of our results, and pointers for future work.

II. RELATED WORK

Our goal is to study a flooding-based denial-of-service
(DoS) attack against opportunistic networks, and social mit-
igation of this attack. Security of traditional networks against
flooding attacks has been well-studied. For example, Mirkovic
and Reiher present a taxonomy for distributed denial-of-service
(DDoS) attacks [19], with particular reference to the Internet.
Belenky and Ansari survey IP traceback methods [1], used to
combat Internet DoS by allowing identification of the source
of malicious packets. The defence scheme that we introduce
similarly relies on identifying the source of malicious packets,
but via a different mechanism (cryptographic signatures).

Flooding attacks in less traditional mobile ad-hoc networks
(MANETS) are also well-researched. Guo et al. present a de-
tection mechanism for MANET flooding attacks [13]. Kim and
Helmy introduce a framework to traceback such attacks [17].
Tan and Seah demonstrate a possible countermeasure, through
statistical filtering [26]. These methods, however, do not extend
to disconnected networks such as opportunistic networks.
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Considering spoofed identities more generally, MANETS
and opportunistic networks are particularly vulnerable to the
Sybil attack [9], where a malicious node masks its identity,
presenting multiple “fake” identities to the network. Where a
centralised authority is present, such as in traditional OSNs,
social network analysis may aid detection of these fake identi-
ties [6]. Where no centralised authority is available, detection is
challenging. Piro et al. [23] present a possible method to detect
Sybil attacks in ad-hoc networks by monitoring transmissions,
while Yu et al. [28], use social network information to detect
abnormality. The detection methods are not, however, efficient
in disconnected opportunistic networks.

Chen et al. explicitly consider security in opportunistic
networks [7]. They identify the class of flooding attack that
we investigate in this paper (which they term a “hypernova
attack”), and benchmark its impact against simulated datasets.
They do not, however, study real datasets or possible attack
mitigations, as we do here.

In a superset of opportunistic networks, delay-tolerant
networks (DTNs), Uddin et al. investigate countermeasures for
a different spoofing attack, where one node steals the identity
of another in order to absorb packets intended for the victim.
More closely related to the flooding attack considered in this
paper, Burgess et al. [5] investigate mitigation of various DTN
attacks, but focus on bandwidth saturation rather than node
energy. Choo et al. [8] also investigate the robustness of DTNs
to various attacks, but do not consider mitigation. Lee ef al.
research mitigating flooding attacks in DTNs [18] — but with
a mechanism relying on probabilistic routing protocols only,
rather than utilising social network information.

Our proposed scheme relies on leveraging trusted social
contacts. Using trusted social contacts to improve security
in DTNs has been described by El Defrawy et al., but in
the context of preserving privacy rather than maintaining
availability [11]. Whitelisting messages from immediate social
contacts has been introduced in the context of email by Garriss
et al. [12], and extended for more distant social contacts
by Hameed et al. [14] — but both rely on a centralised
architecture, and do not generalise to decentralised networks.
Trifunovic et al. investigate blocking unwanted spam messages
in opportunistic networks [27]. Their scheme relies on assign-
ing trust values to all nodes rather than trusting messages from
only immediate social contacts, and also is dependent on the
manual classification of spam message content. To our knowl-
edge, we are the first to use trusted social contacts to mitigate
an attack on the availability of opportunistic networks.

III. ATTACK MODEL AND DEFENCE

Our goal is to investigate the impact of a flooding attack
on an opportunistic network, and to mitigate this attack. In a
flooding attack, the attacker floods the network with messages.
Network nodes receive and relay copies of these messages
throughout the network, consuming their finite resources (such
as battery) in the process. The intent of the attacker is to
overload these finite resources, causing nodes to fail, and
consequently degrading overall network performance.

In order to formalise this attack, we consider an attacker
with certain, limited capabilities, which we enumerate and
formalise within the following attack model.

A. Attack model

We consider the attack against Simple Social Network
Routing (SSNR) [21]. In SSNR, each node has a set of friends.
The original sender of each message embeds a copy of their
list of friends within the message, as part of its headers. This
friends list then informs the routing of the message through
the network: if a node appears in this list, then it will relay
the message. For redundancy, the message is multiply copied,
and thus may take more than one path to reach its destination.

We make the following assumptions, inspired by [5], about
the capabilities of the attacker:

1)  Spoofing messages: Messages are clear text, so the
attacker can spoof any header of the message — or
the entire message.

2)  Identity: The attacker can spoof their MAC-layer
address to hide their network identity.

Making these assumptions, the attacker may perform a
simple flooding attack. When encountering another node, the
attacker can generate a new message. This message, however,
has spoofed headers, falsely indicating that it should be routed
via the node — i.e., the node will believe that it is relaying
the message on behalf of one of its friends.

Worse, the attacker can additionally spoof the “friends list”
(i.e., the set of nodes which should relay the message) header,
with a permissive set of nodes. This allows amplification of
the attack: after the attacker injects the initial message into the
network — by sending to the encountered node — the message
will then be relayed, consuming further resources without
additional cost to the attacker. This amplification is crucial
to the attack: a relatively small number of messages generated
by the attacker may be amplified many times throughout the
network, thus consuming disproportionate network resources.

To further increase the attack, the attacker may spoof
multiple MAC-layer addresses, in a manner similar to the Sybil
attack [9]. This allow the attacker to send a larger number of
messages to each encountered node: the node cannot blacklist
a single MAC-layer identifier which generates numerous mes-
sages in a single encounter, because the messages appear to
have been sent from numerous other encountered nodes.

Finally, the attacker may set an undeliverable destination
address for the message. This ensures that the message will
propagate as much as possible through the network (i.e.,
consuming greater resources), since it will never be delivered.

B. Defence

Due to the spoofing of headers, the above attack is difficult
to detect at any node, using only its local knowledge. There is
no way to determine a message’s true origin. Therefore, even if
a particular message should somehow be identified as an attack
message, this lack of accountability and traceback means that
only this one message would be locally dropped; the attacker
may continue flooding other messages, under a new identifier.

We therefore introduce a new security requirement and
assumption. The intention is to enable a lightweight scheme,
where nodes authenticate that messages which they are willing
to receive and relay are truly generated by one of their friends.



We require a public/private key pair for each node. Each
message is signed by its original sender, allowing any node
knowing the sender’s public key to verify the message origin.

One limitation of this scheme is that we require key distri-
bution, when PKI may be unrealistic for a fully decentralised
network [21], [11]. We note, however, that nodes have friends
with whom they communicate, and we assume that the nodes
locally know who their friends are. We further assume that
friends know one another’s public keys. These public keys
may be shared between friends out-of-band of the opportunistic
network without requiring a fully-fledged PKI: possibly in
a physical meeting, by earlier communication via traditional
networking infrastructure, or even via snail-mail.?

Since messages in the network are only relayed by the
original sender’s friends, each relay node can thus verify that
the message sender is truly their trusted friend by checking
the signature (Algorithm 1): if the message is not signed by
their friend, then it has been spoofed and is discarded. This
mitigates the flooding attack.

Algorithm 1 Message check: only accept a message for
relaying if the original message sender is a trusted friend.

1. if friends_with(message’s original sender) and
has_valid_original_sender_signature(message) then

2:  accept message for relaying

else

4:  discard message

(5]

It remains possible, however, for a node with genuine
friendship links to other nodes to flood messages into the
network; these messages will be authenticated and relayed by
the attacker’s friends. But this is a more expensive attack:
the attacker must create genuine “friendship” relations with
the nodes being attacked, and faking such a social relation is
more expensive than spoofing a message. Additionally, even if
a node can “trick” other nodes into becoming friends with it,
the attack may still be mitigated. Each network node can now
detect the attack, by looking locally at the messages which it
has received for relaying. Each message can be linked back
to its original sender. If a particular sender has generated
excessive network traffic then this node can be blocked (i.e.,
blacklisted for relaying messages). This means that network
nodes either (i) block the attacker locally, if the attacker has
been successful in generating abnormally much traffic at that
node, or (ii) do not see abnormal traffic from the attacker
(perhaps due to the attack being throttled), in which case the
attack is also unsuccessful. Either way, the attack is mitigated.

We note that other, more limited, wireless attacks may
still be possible. For example, the attacker may attempt to
overwhelm a single proximate node by transmitting invalid
messages to it at a very high rate, as in a jamming attack [22].
The energy usage by the individual node to receive these mes-
sages — even if the messages are then immediately discarded
as invalid — may drain its battery and take the node offline.
But this is a weaker attack, i.e., without message amplification

throughout the network. We consider these targeted attacks on
individual proximate nodes as out of scope for this paper;
our focus is on mitigating flooding attacks with message
amplification throughout the network.

IV. EVALUATION

We now present an evaluation of the flooding attack on net-
work performance — with and without the defence — against
three real-world datasets. Following [20], [21], we conduct
trace-driven simulation using a custom Python opportunistic-
network simulator, for real-world datasets containing encoun-
ters and social network information.

A. Datasets

‘We use three real-world datasets; two were collected in our
previous work. All datasets are publicly-available:

e  The SASSY dataset [4]. Twenty-five participants were
equipped with 802.15.4 Tmote Invent sensors, and
tracked for 79 days. We augment the trace as detailed
in [21], resulting in a dense trace of encounters
between participants. Social network information was
obtained from Facebook friendships: friendship in the
defence scheme corresponds to Facebook friendship.

e The LocShare dataset [2]. Locations of 80 partici-
pants were collected during four one-week runs of
20 participants. Encounters were defined as occurring
when participants passed within 10 meters of one
another — the approximate Bluetooth range. As for
SASSY, social network information was obtained from
Facebook friendships.

e  The Reality Mining dataset [10]. In this well-known
dataset collected at MIT, 97 university members car-
ried mobile phones for an academic year. As in [21],
[20], we define Bluetooth encounters between par-
ticipants as opportunities for message exchange, and
use mobile phone address book contacts to determine
social relations for each user.

B. Simulation parameters

In line with our previous work [20], [21], we use the
following parameters for our simulations:

e 100 runs per data point.

e  One week of simulation time per run.?

e  Average of one (non-attack) message per node per day.
e  Message TTL of one day.

e  Energy model for node batteries (following [3]):
o  Maximum energy: 1200 mAbh; at the beginning
of each simulation run, each node is assigned
a random amount of energy between zero and
this maximum.
o  Energy loss per second: 1.9 x 1073 mAh.

2A similar approach to key exchange is used by Threema (https://threema.
ch/en/), an existing non-opportunistic mobile messaging application. Security-
conscious users may exchange keys in-person (scanning machine-readable QR
codes), to enable later secure communication over untrusted networks.

3For LocShare, there are four one-week parts; we use each one-week
segment with equal frequency. For SASSY and Reality Mining, following [20],
[21] we select one-week intervals where there are sufficient numbers of nodes
present for non-trivial routing to be possible.
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o  Energy per message sent/received*: 0.4 mAh.

o Nodes participate in the network until they run
out of energy. They then recharge offline for 8
hours, during which they do not participate in
the network, and return with full energy.

o Infinite buffers; no transmission loss.?

Following [20], [21], messages which arrive in zero-time
(i.e., from a direct link between the original sender and final
recipient) are excluded from analysis because, when sender and
recipient are in proximity, there are presumably more efficient
forms of communication than an opportunistic network. By
excluding these transfers, we are able to focus on network
performance in non-trivial opportunistic scenarios.

C. Flooding attack modes

Following [5], we pick one node from the trace in each
run to act as the attacker; we do not add new attacker nodes
because a model to generate synthetic node movement traces is
beyond the scope of this paper. The attacker attempts to flood
the network with attack messages during encounters with other
nodes. It does not participate in relaying background traffic.

We simulate the following modes:

e  Baseline: As a measurement of baseline behaviour of
the network, no attack messages are generated.

o  Vulnerable: Simulation of the default behaviour of
SSNR, without any countermeasures to the attack
as introduced in Section III-A. At each encounter,
the attacker generates 100 spoofed messages.® As
discussed when introducing the attack, message head-
ers are spoofed to ensure that the message is (i)
undeliverable (i.e., has no real final destination node),
and (ii) eligible to be relayed by any node.

e  Resistant: Simulation of a passive defence scheme, as
introduced in Section III-B. The attacker must sign
each attack message, so messages are only relayed via
its genuine social contacts (friends). As for Vulnerable,
the attacker sends 100 messages per encounter.

e  ResistantBlocks: As for Resistant, but with an added
active defence. Nodes locally maintain counts of mes-
sages they have received from each other node — with
message origin verified since only signed messages
from social contacts are accepted. Each node locally
looks for any abnormal nodes, i.e., any node which
has sent three standard deviations above the mean
number of messages. If such a node is detected, then
it is blocked at the detecting node; i.e., the node will
discard further messages originating from this sender.

4We assume that the same amount of energy is used per message for each
of the modes introduced in Section IV-C, i.e., that the energy cost of signing a
message or verifying a message signature is small in comparison to the fixed
radio energy usage for exchanging the message.

5 As detailed in Section IV-D, we focus on measuring message loss caused
by overloaded nodes which run out of energy. We only introduce this one
source of message loss to avoid confounding the results.

5Some traces have artifacts, where a single logical encounter is stored as
numerous, consecutive physical encounters. For example, a Bluetooth scan
may detect the same node during consecutive scans. To avoid skewing results
due to these artifacts, we limit the attacker to sending to encountered nodes
no more than once every ten minutes.

D. Metrics

To evaluate the efficacy of the attack, we use three metrics:

1)  Proportion of the time that (non-attack) nodes spend
offline recharging. For example, if each node spends
eight hours in every 24 hours recharging, then it is
offline recharging for 33% of the time.

2)  Delivery ratio. The proportion of (non-attack) mes-
sages which arrive at their intended destination.

3)  Delivery delay. The delay between the first transmis-
sion of a message, and its first arrival at its intended
final recipient node.

If the attack is successful in overloading network nodes,
i.e., causing them to run out of energy and fail, then we would
expect the nodes to spend a greater proportion of time offline
recharging. We therefore use as a metric the proportion of
the time that the non-attack nodes spend offline recharging.
The remaining two metrics — delivery ratio and delivery
delay — are widely used as indicators of overall network
performance [16].

V. RESULTS

Figures 1(a)-2(c) show our simulation results. Due to space
constraints, we elide the plots for the LocShare dataset; trends
for each metric were the same as for the Reality Mining dataset.

We consider two ways to measure the success of the attack:
by examining the impact on individual nodes (with the metric
of average proportion of time offline), and on the overall
network performance (delivery ratio and delivery delay).

A. Impact of the attack

To determine the impact of the attack, we compare the
metrics for each dataset in the Vulnerable mode, where the
attack is performed, to the Baseline mode.

Figure 1(a) shows that there is a significant impact on
nodes’ proportion of time spent offline for the SASSY dataset.
The attack has drained the nodes’ energy, causing them to lose
power. The median proportion of offline time is 42.7% for
the Vulnerable mode, compared to the Baseline mode’s 4.7%.
For the sparsely-connected Reality Mining dataset, Figure 2(a)
shows a more modest — but again significant — increase in
node offline time, from 4.4% to 5.3%. The effect in the also-
sparse LocShare dataset (plots elided due to space constraints)
is similar (4.5% to 5.3%).

We have seen that individual nodes are affected. Is the
network performance as a whole also impacted?

For the SASSY dataset, Figures 1(b)—1(c) show that there is
a significant impact on the overall delivery ratio and delivery
delay. The median delivery ratio falls from 98.2% to 82.7%,
while delivery delay doubles from 3.3 hours to 6.5 hours.
For the Reality Mining dataset, however, Figures 2(b)-2(c) do
not show a significant difference in network performance. The
LocShare results are similar. We believe this is a consequence
of the datasets’ sparsity: the absolute delivery ratios are so low
and variable that any impact is lost in the noise.

Summarising, the attack significantly increases offline
times for individual network nodes. For the dense SASSY
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(a) The flooding attack (Vulnerable mode) over-
loads nodes, so they spend more time recharg-
ing compared to the baseline (median: 42.7% vs
4.7%). The passive (Resistant) and active (Resis-
tantBlocks) defences mitigate this: median offline
proportion falls to 15.1% and 6.3% respectively.

Fig. 1. SASSY dataset.
Reality Mining - Proportion of offline time
°
— o
z ®°
=
£
=) R
5 1
5 :
S :
£
e
8
5
&
8
2
g e
s
5 8
£ °
g — — —_
£ = B ==
<+ o - ' —
°
o
T

Baseline Vulnerable Resistant ResistantBlocks

Mode

(a) In this sparse dataset, the attack causes a more
modest — but still significant — increase in offline
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(b) Overall network performance, as measured
by delivery ratio, falls during the attack (from
98.2% to 82.7%). The passive and active defences
mitigate the attack.
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(b) There is no significant difference in delivery
ratios across the different modes.
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(c) The attack worsens performance, increasing
the delivery delay (3.3 hours to 6.5 hours). The
passive and active defences mitigate this impact.
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(c) There is no significant difference in delivery

time (4.4% to 5.3%). The defences mitigate this.

Fig. 2. Reality Mining dataset.

dataset, the overall network performance impact is also directly
measurable. This demonstrates the efficacy of the attack.

We also note that impacting the energy of individual
nodes (i.e., the mobile devices carried by network users) may
discourage users’ participation in the network. By theories
such as Metcalfe’s Law and Reed’s Law [24], this may further
reduce the value of the network for other nodes.

B. Efficacy of the defence

The Resistant mode implements the passive defence, and
ResistantBlocks the active defence. By comparison to the
Vulnerable mode, we can determine their efficacy.

From Figure 1(a), we can see that the defence effectively
mitigates the effect of the attack on nodes’ offline times for
the SASSY dataset. Compared to a median of 42.7% time

delays across the modes.

offline for the Vulnerable mode, this falls to 15.1% with the
Resistant mode, and further to 6.3% with the ResistantBlocks
mode — almost to the Baseline level. A similar trend holds for
the Reality Mining dataset, shown in Figure 2(a), and for the
LocShare dataset. This is less pronounced, because the attack’s
impact was more moderate for these sparse datasets.

The network performance impact is also mitigated. For the
SASSY dataset, Figures 1(b)-1(c) show an increased delivery
ratio, and corresponding decreased delivery delay, using the
Resistant mode (82.7% to 97.0%, and 6.5 hours to 4.4 hours).
With the active defence, ResistantBlocks, the performance is
further improved, to near-Baseline levels (97.6% delivery ratio,
and 3.5 hours delivery delay). For the Reality Mining and
LocShare datasets, the attack had less effect on network per-
formance, but the defence still does not worsen performance.



VI. CONCLUSIONS AND FUTURE WORK

This paper has described a simple flooding attack against
opportunistic networks. We have simulated the attack using
real-world datasets and shown it to be capable of disrupting an
opportunistic network, both at the node level by taking nodes
offline, and at the global network level by lowering delivery
ratio. We have proposed a social-network-based mitigation
strategy which is lightweight and appears effective.

Our results indicate that while it is possible to mitigate a
flooding attack using our modified routing protocol, this does
not come for free. We have introduced assumptions, outlined
in Section III, which may impede opportunistic network use.

Specifically, we assume the existence of some mechanism
for out-of-band key distribution amongst socially-connected
nodes. On the one hand, this may seem a reasonable assump-
tion. If a node is “friends” with another node, then they may
well have had sufficient opportunity to exchange keys prior to
encountering each other in an opportunistic network scenario,
for instance via meeting physically or through an infrastructure
network. On the other hand, by requiring keys to communicate,
we may be impeding potential uses of opportunistic commu-
nication. For instance, epidemic routing applications such as
emergency broadcast or content distribution, where nodes send
messages to any available node, are no longer possible. If
epidemic routing is allowed, then a recipient node may no
longer be able to verify a sender’s key, which means that
malicious nodes could generate throwaway public-private key
pairs for forged nodes and so conduct the flooding attack.

A future measurement-based study may reveal whether
the public key cryptography assumption would hold in a
real deployment. Alternatively, it may be possible to relax
the requirement. Shikfa et al. propose the use of identity-
based cryptography as an alternative to sharing public keys in
opportunistic networks [25]. This introduces a new restriction,
however, now requiring a globally-trusted third party.

Another avenue for future work might be to explore
whether it is indeed possible to enable epidemic routing
while maintaining public key cryptography, for instance by
delegating trust to “friends of friends”.

Our results also indicate that the flooding attack is more
effective in dense than in sparse datasets. We used a variety
of datasets as we do not know what an actual large-scale
opportunistic network would look like. One can imagine a
more sophisticated attack that dynamically changes its param-
eters depending on mobility or the density of node encounters;
sophisticated attacks may require more sophisticated defences.
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