
Privacy-enhanced social-network routing

Iain Parris1,∗, Tristan Henderson1

School of Computer Science
University of St Andrews

St Andrews, Fife KY16 9SX, UK

Abstract

Opportunistic networking — forwarding messages in a disconnected mobile ad hoc

network via any encountered nodes — offers a new mechanism for exploiting

the mobile devices that many users now carry. Forwarding messages in such a

network often involves the use of social-network routing— sending messages via

nodes in the sender or recipient’s friends list. Simple social-network routing, how-

ever, may broadcast these friends lists, which introduces privacy concerns.

This paper presents a threat analysis of the privacy risks in social-network

routing. We introduce two complementary methods for enhancing privacy in

social-network routing by obfuscating the friends lists used to inform routing de-

cisions. We evaluate these methods using three real-world datasets, and find that it

is possible to obfuscate the friends lists without leading to a significant decrease in

routing performance, as measured by delivery cost, delay and ratio. We quantify
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the increase in security provided by this obfuscation, with reference to classes of

attack which are mitigated.

Keywords: social networks, opportunistic networks, privacy, social-network

routing

2010 MSC: 68M10, 91D30

1. Introduction

Mobile devices, such as mobile phones, are commonly carried around by peo-

ple during their daily lives. While most current communication using such devices

takes place through infrastructure such as licensed GSM or UMTS networks, it

may be possible to exploit these devices in an ad hoc manner. Messages may be

directly exchanged between devices when they are in physical proximity to each

other. In this way, an opportunistic network may be formed; where people send

messages to each other via intermediary devices utilising a disconnected store-

and-forward architecture.

One main challenge in opportunistic networks is routing: given episodic con-

nectivity based on people’s real-world movements, how can we send messages

from source to destination? One approach is epidemic routing — flooding the

network with messages, by sending messages during each and every encounter.

This approach indeed ensures that, if a path exists between source and destination,

the message will certainly find and follow this path to be delivered as quickly as

possible. But sending large numbers of redundant messages, as epidemic routing

is apt to do, is wasteful, and will drain the batteries of the mobile devices rapidly.

To reduce the cost of message delivery, messages should be selectively for-

warded during encounters between members of the opportunistic network. An
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ideal routing algorithm would eliminate redundant messages, while still forward-

ing all other messages. In practice, there is no oracle with global knowledge of all

current and future states of the network: people may move freely, and encounters

are to some degree random. The routing problem, then, is: given only local knowl-

edge, what is a good method of determining whether or not a message should be

forwarded during an encounter?

One possible method for forwarding is social-network routing. Making the

underlying assumption that encounters between mobile devices are more likely

to occur within groups of people who are connected to each other, for instance

through friendship or co-location, than between random strangers, messages may

be “source-routed” — forwarded selectively only between “friends” of the origi-

nal sender.

But one oft-overlooked problem with social-network routing is that of pri-

vacy. In social-network routing schemes, intermediate nodes forward messages

based on whether the encountered node is in the original message sender’s friends

list. This may involve broadcasting the social network information — this friends

list— in the clear; the information cannot be encrypted end-to-end, even in the

presence of a public key infrastructure, because it is utilised by intermediate nodes

to inform their routing decisions.

There exist potential privacy concerns when broadcasting friends lists. For

example, users of the opportunistic network might have an embarrassing friend

about whom they do not wish the world to know. Or a user may be happy with

some of their friends list information being used to inform routing decisions, but

not with their whole set of friends being world-viewable: it is one thing for a cu-

rious person to be able to infer some of the friends based on forwarded messages,
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but quite another to distribute the potentially-sensitive information freely. Such

privacy concerns are not just theoretical. For example, social network links (in

this case, frequent email contacts) were broadcast by default during the release of

Google Buzz in February 2010, prompting user backlash.

We wish to mitigate these privacy concerns, while still retaining the advan-

tages of social-network routing.

In this paper we:

• Analyse the potential privacy threats implicit in social-network routing, to

present an attack tree.

• Investigate the effect on routing performance of obfuscating the social net-

work information used for social-network routing, using three real-world

datasets.

• Investigate hiding social network information using one-way hashing, via

the probabilistic Bloom filter data structure.

• Quantify the social-network routing security increase obtained when apply-

ing the levels of friends list obfuscation which our performance experiments

indicate are practically-achievable, with reference to classes of attack which

are mitigated.

Our contributions are to provide one of the first analyses of threats in social-

network routing, and the first schemes to attempt to enhance privacy in social-

network routing without the use of key management. We augment our previous

paper [1] with extended evaluations using additional datasets, and we discuss link-

ability and eavesdropping attacks against our schemes. The paper is outlined as
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follows. In the next section we introduce the concept of an opportunistic network.

In Section 3 we analyse the possible privacy threats in these networks, followed

by a discussion of our two social-network routing schemes in Section 4. Section 5

presents an evaluation of these schemes using two real-world traces. Section 6 dis-

cusses the security of our schemes. Section 7 discusses related work, and finally

in Section 8 we conclude and discuss ongoing work.

2. Opportunistic networks

Opportunistic networks [2] have become increasingly popular and relevant

as more people carry mobile devices. Essentially, an opportunistic network is

a disconnected MANET (mobile ad hoc network) where mobile nodes can send

messages in the absence of any knowledge about network topology. Nodes op-

portunistically make use of any other nodes that they encounter, as long as these

encountered nodes are likely to help the message reach its destination. For in-

stance, users carrying mobile phones can send messages via other mobile phone

users that they meet. Such networks can be used to create new applications, such

as social media or information dissemination [3], even in the absence of existing

infrastructure.

The efficiency and performance of an opportunistic network critically de-

pends on accurately determining which encountered nodes will be useful in for-

warding. Early opportunistic network routing protocols, such as epidemic [4] or

PRoPHET [5] routing, used network or mobility characteristics. But one fruitful

method of improving forwarding is to use social network information. If we know

that a node is a friend of the message sender or of the intended message recipient,

then it may make sense to use that node for forwarding. Many forwarding schemes
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have been proposed that leverage social network analysis in this way. The Bubble

Rap [6] scheme analyses encounter patterns to detect communities of likely en-

counters, and uses these communities to decide to which encountered nodes data

should be forward. The SimBetTS [7] and SimBetAge [8] schemes use further

metrics from social network analysis, namely centrality and betweenness, to dy-

namically develop utility functions for each encountered node to aid forwarding

decisions. Habit [9] combines social network and location information to build

an information-dissemination system for mobile devices. The PeopleRank [10]

and SRSN schemes [11] take an alternative approach: instead of determining so-

cial network information from encounter patterns, they use pre-existing social ties

(e.g., from social network sites [SNSes] such as Facebook).

In this paper, we refer to this class of opportunistic network forwarding pro-

tocols which leverage social network information as social-network routing, and

further, the class of protocols which broadcast social network information in the

clear as simple social-network routing. Following [12], we refer to two people

connected through social network links as friends, and the complete set of such

friends of a particular person as a friends list. Thus, when sending a message us-

ing social-network routing, the message is forwarded only between members of

the original message sender’s friends list. Also, in suitable contexts, we may refer

to people as being nodes inside a social network — the edges in the network being

the social links of a particular person (node), and the linked-to people (nodes) in

turn are the original node’s friends.

As motivated in Section 1, our focus is on enhancing social-network routing

privacy.
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3. Threat analysis

Before we can attempt to enhance privacy in social-network routing, it is nec-

essary to understand the possible threats against privacy that may occur in oppor-

tunistic networks using such routing schemes.

We consider an attacker with certain, limited capabilities. From the attacker

models enumerated in [13] against opportunistic networks, our interest is in the lo-

cal eavesdropper (an attacker who can eavesdrop in the vicinity of a user), and the

partial eavesdropper (an attacker who can place receivers in a number of hotspots

and intercept traffic in the vicinity). We agree that a global eavesdropper is not a

practical attack model in an opportunistic network — by the very nature of such

a network, nodes are distributed over a very large area, and traffic is not routed

through any central hub.

Therefore we do not consider attacks which would require global knowledge,

such as an attacker studying overall network traffic patterns. We enumerate attacks

based on intercepting some number of messages.

We choose to employ attack trees, as introduced by Schenier [14]. An attack

tree is a type of and-or tree, used to enumerate attacks against a system. The

root node of the tree is the overall attack goal, while nodes within the tree are

subgoals. The children of a particular node are the steps required to achieve that

node’s subgoal. By constructing such a tree from the root node (overall goal)

downwards, we now enumerate a structured threat analysis for attacks against an

opportunistic network using social-network routing.

3.1. Goal: Discover structural information about the social network graph.

1. Learn whether a friendship link exists (or does not exist) between two users.

OR
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(a) Discover communication (or lack of) between the users. OR

i. Eavesdrop a message as it is forwarded user-to-user, from source

to final destination (or any intermediary). OR

A. In simple social-network routing, a message traced along such

a path reveals social network links (or lack of) – because mes-

sages are forwarded if and only friendship links exist. Friend-

ship links are the path traversed by the message.

ii. Extract source/destination from an intercepted message to an in-

termediary.

(b) Extract friendship links from an intercepted message to an intermedi-

ary.

2. Learn how many friendship links a particular user has.

(a) Extract friendship links from an intercepted message to an intermedi-

ary.

3.2. Goal: Discover whether two individuals have been in proximity within a

certain timeframe.

1. Follow one or both individuals for the time in question. OR

2. Infer proximity by sending a specially crafted message, and making infer-

ences based on where the message is observed within the network. OR

(a) Example: has Alice from New York recently met Bob from Los Ange-

les? To find out, an attacker Mallory in New York can inject a message

addressed for colluding attacker Trudy in Los Angeles into the system,

with Alice and Bob only as requested intermediaries. If Trudy receives

Mallory’s message, Mallory and Trudy have learned that Alice and

Bob have met within the lifetime of this malicious message.
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3. Infer proximity by noting that messages are not forwarded twice. OR

(a) Example: if a message is not forwarded to a node known to be a re-

quested intermediary, the message must already have been forwarded

earlier. An attacker can infer that the nodes were in proximity before

this time. This is a passive version of 2, not requiring message injec-

tion.

4. Wait in a common place and listen for message traffic. Message exchange,

or message headers, may reveal the colocation of individuals to an attacker.

3.3. Goal: De-anonymise a social network to discover the presence of individuals

within the network.

1. Follow individuals, and tie their network identifiers to their actual identities.

OR

2. Infer identities from known portions of the social network.

(a) Example: if five people are known to be mutual friends, and four are

deanonymised with a fifth mysterious node, an attacker can infer that

this unknown node is the last member of the clique.

4. Privacy-enhanced social-network routing

In simple social-network routing schemes, the sender’s friends list is transmit-

ted in the clear along with each message. Intermediate forwarding nodes are able

to read the sender’s full friends list in plain text, facilitating most of the threats

outlined in Section 3.

Encrypting the friends list end-to-end can ensure privacy, but we would then

lose the advantages of social-network routing: intermediate forwarding nodes
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would no longer be able to exploit the sender’s social network information to

inform their routing decisions.

If friends lists could be encrypted using pair-wise keys shared between each

pair of nodes, then at least an eavesdropper could not overhear the sensitive data.

However, this has two problems. Firstly, we assume lack of a public key infras-

tructure (PKI) in opportunistic networks — due to the nature of such networks,

we regard building a PKI as extremely difficult at best, and arguably impossible.

Secondly, and more fundamentally, the sender may not wish to broadcast their so-

cial network information to all of their contacts — which would necessarily occur

for this information to be used by these contacts as intermediaries for routing.

Inspired by [15], we attempt to target the privacy threats introduced by social-

network routing by modifying and obfuscating each sender’s friends list, on a per-

message basis, at message generation time. By modifying the friends lists, we aim

to introduce plausible deniability; each list transmitted is no longer a true copy of

the friends list. By obfuscating the friends lists, we aim to make it more difficult

for a person with a copy of a particular friends list to read out its contents. In this

way, from our threat analysis in Section 3, we are specifically targeting threats 1b

and 2a — recovering social network information from intercepted friends lists—

which we regard as the most relevant privacy threats.2 We now introduce two

schemes for doing so.

2 We discuss why we regard these as the most relevant threats in Section 6 — along with

quantifying to what extent the threats are mitigated.

10



4.1. Statisticulated Social Network Routing

Named for a portmanteau of statistical manipulation3, our first scheme is

Statisticulated Social Network Routing (SSNR).

For each message transmitted, the sender makes changes to the message’s

copy of their friends list— adding or removing nodes. While the friends list sent

along with the message will be based to some extent on the sender’s true friends

list, and so still useful for social-network routing, the friends list has been modified

by the addition or removal of nodes. Any node seeing the friends list sent along

with the message now cannot say with certainty whether a particular node is truly

one of the sender’s friends, or truly not one of the sender’s friends.

The sender may in practice choose the level of manipulation of the friends list

on a per-message basis. In our evaluation, however, we examine routing perfor-

mance for a particular choice of modification degree of the sender’s friends list.

For instance, we may choose a +50% modification of the friends list. This no-

tation signifies that the sender adds 50% more nodes to their friends list before

message transmission. We thus determine average performance for a particular

degree of friends list modification. For simplicity, we do not evaluate routing

performance while simultaneously adding and removing nodes; only for either

adding or removing nodes.

It would still be possible for a malicious person to average over the friends

3 Huff coins the term statisticulation in his book How to lie with statistics [16], where he

writes:

“Misinforming people by the use of statistical material might be called statistical

manipulation; in a word (though not a very good one), statisticulation.”
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lists included with many messages of one particular sender. But we have created

much more work for this malicious person: many generated messages must be

intercepted, rather than just one single message to reveal all. We quantify and

discuss the nature of the improvement in security in detail in Section 6.

4.2. Obfuscated Social Network Routing

In our second scheme, Obfuscated Social Network Routing (OSNR), instead

of transmitting the sender’s friends list as a list of nodes, we embed the friends list

within a Bloom filter.

A Bloom filter [17] is a probabilistic data structure which allows probabilistic

querying for set membership. False negatives are not possible, but false positives

are — with increasing probability as the Bloom filter becomes more full. After

inserting each node in the sender’s friends list into a Bloom filter, we may regard

the Bloom filter itself as a non-trivially-reversible hash of the friends list.

To make a rainbow table attack4 impractical, we create a per-message random

salt, which is sent along with the message in the clear. The elements inserted into

the Bloom filter are a concatenation of this random salt with a unique node iden-

tifier (any unique node identifier would suffice, e.g., a lower layer construct such

as MAC address, Bluetooth address, IMEI, or some higher level identifier tied to

the user rather than the device). In our evaluation, we choose to use Bluetooth

addresses as the identifier.

Given the Bloom filter and the random salt (transmitted in the clear with the

message) and an encountered node’s identifier, it is easy to make a routing deci-

sion: query for set membership of the random salt concatenated with the candidate

4 A rainbow table is a precomputed lookup table of hash value to hash input [18].

12



node identifier. A positive result — guaranteed if the candidate node is inside the

sender’s friends list, but also possible with low probability if not — means to

forward the message, since the encountered node is most likely in the original

sender’s friends list. A negative result means that the candidate node is not in the

sender’s friends list, and so not to forward the message.

Since we are not using encryption (we assumed no PKI), it still may be pos-

sible for an attacker to reverse engineer the Bloom filter by brute force — the

attacker can iterate through all the node identifiers, concatenating each with the

plain-text salt and testing for a Bloom filter match. This is orders of magnitude

more work than a rainbow table lookup, however, and the brute force step must be

repeated for every message. So using the Bloom filter (with salt) does not provide

perfect security, but does make the attacker’s job very much more difficult. We

elaborate and quantify this attack further in Section 6.

It is possible to combine OSNR and SSNR: the friends list may be modified as

in SSNR prior to hashing the social network information in a Bloom filter as in

OSNR. In our evaluation, we refer to this combined scheme as SSNR-OSNR.

We note that Bloom filters are fixed-width — a convenient property for scal-

ability. In pure SSNR, packet headers may grow arbitrarily large as the sender’s

friends list grows; this is potentially a problem for a sender with a very large so-

cial network (and compounded if the social network is grown further using SSNR).

OSNR, and SSNR-OSNR, have no such scaling problem due to the fixed size of the

Bloom filter.

13



5. Performance evaluation

We now present an evaluation of our two schemes to determine their impact

on opportunistic network performance. We use trace-driven simulation with three

real-world datasets.

5.1. Datasets

We chose three real-world datasets to evaluate our routing schemes. While

there are a variety of available datasets including encounter and social-network

information, the three datasets used were chosen for their different scale and struc-

ture.

5.1.1. St Andrews mobile sensor network

We collected the first dataset from a deployed sensor network system, the St

Andrews Sensing SYstem (SASSY), in a previous experiment [11]. We hereafter

refer to this dataset as the SASSY dataset. 25 participants were equipped with

802.15.4 Tmote Invent sensor motes and encounters were tracked for a period of

79 days, although for efficiency we chose to use only the first 30-day section of

this trace for our simulations.

The original dataset was very sparse due to hardware limitations which meant

that many encounters may have been missed. Inspired by [19] and [20], we aug-

ment the collected traces using a working-day and augmented random-waypoint

model. Nodes randomly select a waypoint from a set of points of interest and walk

according to predetermined paths (such as roads) to reach these points. Nodes

moved at 0.5–1.5ms−1. At each waypoint the nodes could stop for 0–120s. Each

node was additionally randomly assigned a home location, and the nodes would
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travel to this location to “sleep” for 8 hours in every 24. Each node had an ad-

ditional 10% probability of either visiting the Computer Science departmental

buildings (since our participants were mainly Computer Science students) or their

“home” at any waypoint selection.

To obtain social network information for the SASSY dataset, we use the self-

reported social network information provided by the 25 participants at the start of

the experiment: their Facebook “friends”. Many participants knew each other: the

mean friends list size (i.e., number of Facebook friends also participating in the

experiment) was 9.8, with a standard deviation of 5.0.

5.1.2. MIT Reality Mining

The second dataset used was the well-known Reality Mining dataset [21] col-

lected at MIT [22]. This dataset comprises Bluetooth encounter traces from 97

mobile phone users over the course of an academic year. To obtain social network

information for this dataset, we use the participants’ address book information —

if a pair of nodes encounter one another, and at least one has the other in their

address book, then the pair of nodes is said to be friends; each node has the other

in their friends list. Unlike the SASSY dataset, few participants knew each other:

52 participants had at least two other participants in their friends lists (and were

thus candidate nodes for social-network routing in our simulations). Of these 52

participants, the mean friends list size is 3.7, with a standard deviation of 2.0.

Because of differing lengths of participation in the experiment5, we could not

treat the dataset as one contiguous trace — it would not be meaningful to simulate

5Some participants carried mobile phones for the full nine months of data collection, while

others participated for much lower amounts of time — as low as one month.
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message-passing between people no longer participating in the study. Therefore,

at the beginning of each simulation run, we draw out a random6 30-day segment

of the trace.

5.1.3. NUS student contacts

The third dataset used is a student contact pattern dataset comprising the class

schedules of 22 341 students at the National University of Singapore [23] (here-

after referred to as the NUS dataset).

The dataset describes contacts between students in recurring weekly sessions.

As in the original paper describing the dataset [24], we regard an encounter be-

tween two students as occurring when these students share a session — that is,

when the students are in physical proximity in the same classroom. We regard

two students as having one another as social contacts, so having one another in

each of their respective friends lists, if they share at least one session in the week.

Defining social links in this way, the mean friends list size is 561, with a standard

deviation of 396.

Due to memory constraints, we do not perform simulations using the full NUS

dataset: the full dataset contains 12.3M encounters and 6.2M social network links.

Instead, we sample a subset of students from the full dataset in two different ways,

to derive two new, smaller datasets. In each case, after extracting a subset of the

students, we preserve all encounters and social network links between students

6 The only constraint placed on the selection of the random 30-day segment which we draw out

is that at least three participants, each with at least two other participants in their friends list, must

be carrying phones throughout the 30 day period — otherwise meaningful social-network routing

could not occur (since there would be no message-passing intermediaries).
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within this subset.

1. We randomly select 500 students from the full 22 341 students in the NUS

dataset. We call this derived dataset NUS-R. Results from this dataset may

reflect a real-world opportunistic network deployment, where only a pro-

portion of students participate in the opportunistic network.

2. A downside of randomly selecting students from the full NUS dataset is that

doing so leads to a relatively sparse social graph. Therefore, we adopt the

approach of Liu and Wu [25] to sample the NUS dataset in a second way,

which avoids the extremes of sparsity (as occurs when randomly sampling

students) or over-connectedness in the new, derived, size-reduced dataset.

We select the first student randomly, and then, to select the kth student, we

randomly divide the previously-selected k−1 students into two equal-sized

groups S1 and S2, and select the kth student as that student with the high-

est ∑s1∈S1 sim(s,s1)−∑s2∈S2 sim(s,s2) where sim is the number of common

class sessions in which two students are enrolled. Using Liu and Wu’s ap-

proach, we sample 500 students from the full NUS dataset. We call this

derived dataset NUS-L.

For NUS-R, the mean friends list size is 12.0, with a standard deviation of

8.54. For NUS-L, the mean friends list size is 119, with a standard deviation of

39.9. The wide difference in mean friends list size (while the absolute number of

nodes is the same at 500) is an expected outcome from the different natures of the

two NUS sampling methods, and provides an initial illustration of the differing

properties of the derived datasets.
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Dataset
Number of nodes Clustering

coefficient
Social links Encounters

Total ≥1 edge

SASSY 25 25 0.771 254 29 909

Reality Mining 97 75 0.318 107 32 359

NUS 22 341 22 340 0.536 6 261 458 12 320 946

NUS-L 500 500 0.634 29 743 71 819

NUS-R 500 476 0.506 3 001 6 109

Table 1: Dataset statistics. All fields refer to properties of the social network, except for the

number of encounters.

5.1.4. Dataset statistics

Table 1 provides an overall description of the datasets used for evaluation. It

can be observed that we have a chosen a variety of datasets which vary in size,

timescale and density. This is borne out by visualisations of the various social

networks within these datasets (Figure 1) and the degree distributions of these

social networks (Figure 2), which indicate variety in the network structures. Thus

we are confident that these datasets provide suitable test cases for the performance

of our proposed schemes.

5.2. Simulation parameters

We performed trace-driven simulations using these datasets with the following

parameters:

• 900 messages generated per simulation. Each message was unicast from a

random sender to a random recipient from that sender’s contacts list.
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(a) SASSY dataset. (b) Reality Mining dataset.

(c) NUS dataset. (d) NUS-L dataset. (e) NUS-R dataset.

Figure 1: The social networks from the three datasets used for evaluation. The NUS dataset,

Figure 1(c), was sampled in two different ways to derive two different datasets — Figure 1(d)

and Figure 1(e).
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– SASSY & Reality Mining: We simulate 30 days (choosing a random

30 days in the case of Reality Mining), and generate 30 messages per

day.

– NUS-R & NUS-L: Exploiting the cyclic nature of the dataset, for each

simulation we select one full week of six business days, each with 13

business hours7, beginning each simulation at a random time through-

out the week. That is, we duplicate the first week to obtain an identical

second week, then select out a random one-week period from these

two weeks for each simulation run. We simulate 150 messages for

each of the six business days; total 900 messages.

• Each message has a TTL of one day:

– SASSY & Reality Mining: 24 hours.

– NUS-R & NUS-L: 13 business hours, reflecting one business day in the

compressed business time representation of the original NUS dataset.

• 10 runs for each set of parameters

• SSNR obfuscation from -80% to +200% at 20% intervals.8 When adding

nodes to the sender’s contact list, the nodes added are chosen from the pool

7The original, raw dataset is “compressed” to “business hours”, not real time. [24]
8For some messages, it may not be possible to continue adding or removing nodes to reach the

target modification — if we reach the upper bound of all nodes in the dataset added, or the lower

bound of only one node remaining in the sender’s social network, we stop adding or removing

nodes for this message. For simplicity, we do not simultaneously add and remove nodes from the

social network.
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of nodes present within the dataset (and within the given time slice from the

dataset, in the case of Reality Mining).

For the SASSY dataset, which contains location information, we used a mod-

ified version of the ONE simulator [26], which included our augmented random

waypoint model, to generate ns-2 traces. For speed, we used ns-2 rather than ONE

for all of the simulations. For the Reality Mining and the two NUS datasets, which

have no location information, we could not use ns-2, so instead used a Python

program to parse the encounters and simulate message-passing.

5.3. Performance metrics

To evaluate our simulations, we use the following widely-used metrics from [6]:

• Delivery ratio: the proportion of messages that were delivered, out of the

total number of unique messages created.

• Delivery cost: the total number of messages (including duplicates) trans-

mitted, normalised by the total number of unique messages created.

• Delivery delay: the length of time taken for a message to reach its destina-

tion: the time between the time at which the message is first sent, and the

time at which the message first arrives.

When computing these metrics, we disregard messages which were directly

transmitted from original sender to final receiver. In the NUS derived datasets,

there is a high rate of such encounters — because we derive social network in-

formation from the encounters — and so leaving in these messages obscures the

performance of (non-trivial) social-network routing, where messages reach their
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destination via at least one intermediary. For the other datasets, although inci-

dence is not so high, we also disregard such messages so as to allow comparisons

across datasets. The performance of social-network routing is therefore underesti-

mated: higher delivery ratios and lower delivery delay would be achievable if we

allowed such messages in our analysis.

5.4. OSNR implementation

Since the false positive rate of a Bloom filter depends on the length of the

Bloom filter, and the number of elements in the Bloom filter9, but the number of

elements in the Bloom filter greatly varies between datasets (since the sizes of the

friends lists vary depending on the scale of the dataset), we choose the Bloom filter

length on a per-dataset basis. We aim for a false positive rate of approximately

1% for the unmodified social-network routing case (0% SSNR) in each dataset.

Figure 3 shows the actual OSNR false positive rate for each dataset, based on

the average sizes of the routing friends lists and the lengths of the Bloom filters

in each dataset (32 bits for Reality Mining, 128 bits for SASSY and NUS-R, and

1024 bits for NUS-L). The higher the average size of the unmodified friends lists,

the greater the length of the Bloom filter required in order to target an initial 1%

false positive rate.

To insert each element (string representation of a node ID concatenated with a

random salt, as described in 4.2) into the Bloom filter, the element’s 128-bit MD5

hash10 was divided into four 32-bit portions, each interpreted as a 32-bit integer.

9 The Bloom filter false positive rate ε is approximately (1− e−kn/m)k, where k is the number

of hash functions (in our case, k = 4 since we split the 128-bit MD5 hash into four 32-bit integers);

n is the number of elements in the Bloom filter; and m is the length of the Bloom filter (in bits).
10 MD5 is not collision-resistant, but we are only using the uniformity and one-way properties
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Figure 3: OSNR false positive rate for each dataset. The Bloom filter lengths were selected such

that for pure OSNR (no SSNR modification), the false positive rate would be approximately 1%.

Taking each of these four integers mod the Bloom filter length L resulted in four

values in range 0..(L− 1). These four values were interpreted as indices for bits

in the Bloom filter; and the corresponding bits were, if not already 1, set to 1.

5.5. Results

Figures 4–15 show our trace-driven simulation results for our routing schemes,

for each of our four datasets (SASSY , Reality Mining, NUS-L, NUS-R).

— not the collision-resistance property — of MD5. A maliciously-generated collision does not

affect the security of our system, because the ability to generate a collision would merely result

in another false positive in routing. Such false positives already occur with Bloom filters, and can

more easily be triggered by manually setting more bits of the Bloom filter to 1 than by maliciously

crafting an MD5 collision.
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Figure 4: SASSY dataset. Message delivery ratio vs target modification of the size of the sender’s

friends list. Error bars indicate 95% confidence intervals. It is possible to remove 40% of the

sender’s friends list each message while still retaining high message delivery ratios. Relative to

unmodified social-network routing, 88% of messages arrive after removing 40% of the source

node’s friends list each message.
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Figure 5: SASSY dataset. Message delivery cost vs target modification of the size of the sender’s

friends list. As we obfuscate the sender’s friends list by adding links, the delivery cost increases.

5.5.1. OSNR performance

We note that for every set of friends list size reductions for each of our three

metrics, the OSNR scheme did not significantly impact routing performance.

Figure 3 offers an insight into why this may be: for pure OSNR (no SSNR

modifications), the false positive rate was set — by choosing the length of the

Bloom filter — to approximately 1%, as we discussed previously. This 1% false

positive rate did not significantly affect routing performance, by any of our met-

rics. When removing nodes from the senders’ friends lists, the false positive rate

further decreases — and the decreased false positive rates also do not significantly

affect performance by our metrics.

OSNR thus only ever had a noticeable impact on routing performance when

increasing the size of the senders’ friends lists. Even then this impact was often
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Figure 6: SASSY dataset. Message delivery delay vs target modification of the size of the sender’s

friends list. As we remove from the sender’s friends list, delivery delay increases — but only from

about 5 to 6 hours for simple social-network routing compared to SSNR with −40% change in the

sender’s friend list.
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Figure 7: Reality Mining dataset. Message delivery ratio vs target modification of the size of

the sender’s friends list. It is possible to change the sender’s friends list size by −40% without

significantly reducing the delivery ratio.
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Figure 8: Reality Mining dataset. Message delivery cost vs target modification of the size of the

sender’s friends list. As we obfuscate the sender’s friends list by adding fake friends, the delivery

cost increases. When using OSNR, the false positives associated with using a Bloom filter also

lead to an increase in delivery cost.
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Figure 9: Reality Mining dataset. Message delivery delay vs target modification of the size of the

sender’s friends list. The impact on delivery delay when modifying the sender’s friends list size is

insignificant.
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Figure 10: NUS-L dataset. Message delivery ratio vs target modification of the size of the sender’s

friends list. It is possible to remove 40% of the sender’s friends list each message while still

retaining a 90% message delivery ratio relative to simple social-network routing.
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Figure 11: NUS-L dataset. Message delivery cost vs target modification of the size of the sender’s

friends list. As we obfuscate the sender’s friends list by adding links, the delivery cost increases.

not significant (as for the SASSY dataset, shown in Figures 4–6).

On the few occasions when a significant difference between SSNR and SSNR-

OSNR was visible — such as the upper end of friends list size increases for the

Reality Mining dataset as shown in Figure 8 — we note from comparison to Fig-

ure 3 that the false positive rate for the Bloom filter had grown very high (30% for

Reality Mining +200% SSNR).

5.5.2. SSNR performance

Delivery ratio. Figure 4 shows that for the SASSY dataset, the delivery ratio is

high for all tested social network size target modifications. It is possible to re-

move 40% of the nodes from the senders’ friends lists, while still retaining a good

delivery ratio: almost 90% of the ratio when not modifying the social network at

all.
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Figure 12: NUS-L dataset. Message delivery delay vs target modification of the size of the sender’s

friends list. As we remove from the sender’s friends list, there seems to be a slight trend towards

increasing delivery delay — but the increase is slight both in absolute terms, and in relative terms

compared to the 95% confidence interval error bars.
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Figure 13: NUS-R dataset. Message delivery ratio vs target modification of the size of the sender’s

friends list. After removing 40% of the sender’s friends list each message, the error bars still over-

lap when compared to simple social-network routing— although the means differ, the difference

is smaller than the noise.
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Figure 14: NUS-R dataset. Message delivery cost vs target modification of the size of the sender’s

friends list. As we obfuscate the sender’s friends list by adding fake friends, the delivery cost does

not significantly change when using pure SSNR, but does increase when using combined SSNR-

OSNR. This may be because of the high false positive rate, c.f. Figure 3. When removing from the

friends list, the delivery cost decreases for both schemes (pure SSNR and SSNR-OSNR).
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Figure 15: NUS-R dataset. Message delivery delay vs target modification of the size of the sender’s

friends list. The impact on delivery delay when modifying the sender’s friends list size is insignif-

icant.
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Figure 10 and Figure 13 show similar results for the two datasets derived from

NUS. Although the absolute figures for delivery ratio are different due to the dif-

fering relative connectedness of NUS-L and NUS-R, the trend for the normalised

delivery ratios are similar. Picking out the same −40% SSNR modification of the

senders’ friends lists, we note that, although the means differ (90% of unmodified

social-network routing for NUS-L; 70% of unmodified social-network routing for

NUS-R), the difference is smaller than the noise: the error bars overlap.

Although noisier, and with much lower absolute delivery ratios, than the other

datasets, we see a similar result holds again for the delivery ratios in the Reality

Mining dataset in Figure 8. It is possible to make large modifications to the sizes of

the senders’ friends lists without significantly affecting the delivery ratio, relative

to the error margins.

Delivery cost. Figure 5 shows that for the SASSY dataset, delivery cost is quite

significantly affected by modifying the sender’s target friends list size: the fewer

nodes in the modified sender’s friends list, the lower the cost of sending a mes-

sage. Compared to simple social-network routing, with 50 data messages per

unique message, a −40% change in sender friends list results in only 20 data

messages: fewer than half as many data messages. This corresponds to the result

from Figure 4, where we still retain a high delivery ratio. By applying SSNR,

we have actually improved performance by this metric, by reducing the delivery

cost, but while simultaneously retaining a good delivery ratio — and increasing

the sender’s privacy by not revealing some of their true friends.

Figure 11 and Figure 14 show similar results (in relative, not absolute) terms

for delivery cost for the NUS-L and NUS-R datasets, when removing from the

senders’ friends lists. A −40% change in the size of these lists results in a more
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than halving of data messages for both datasets. The relative differences are large,

though: for NUS-L the change in cost is from 1900 to 700, while for NUS-R the

change in cost is from 37 to 17. The absolute difference is again presumably

due to the differing degrees of connectivity of the datasets, as illustrated earlier in

this section. The differing connectivity presumably also accounts for the differ-

ing performance of pure SSNR when increasing the senders’ friends lists for these

datasets: for the highly-connected NUS-L dataset encounters with the “fake” new

friends are likely, increasing delivery cost, while for the less-connected NUS-R

dataset such encounters do not occur so much, keeping delivery cost about con-

stant. We note that combined SSNR-OSNR does show an increase in delivery cost

for NUS-R, because extra encounters do occur (and with high false positive rates

for the Bloom filter result in message forwarding) — but the number of such ex-

tra encounters is high relative to the relatively-small size of the senders’ friends

lists (as shown in Figure 2), and hence the absolute number of extra forwarding

opportunities in pure SSNR is low, keeping the delivery cost unchanged.

Figure 8 shows that delivery cost for the Reality Mining dataset stays fairly

constant (since it is so low in absolute terms) in applying SSNR which reduces the

friends lists sizes: the delivery cost falls from five messages to three messages on

applying−40% SSNR. A similar effect is seen on applying SSNR which increases

the friends lists sizes as for the NUS-R dataset. The senders’ friends lists are, in

absolute terms, small, as shown in Figure 2. So increasing the relative size of

the friends lists does not dramatically change the delivery cost with pure SSNR,

since few encounters occur with the added fake friends. However, when adding

these fake friends on applying combined SSNR-OSNR, the false positive rate ends

up high (as shown in Figure 3) — about 30% at the upper end of the scale. This
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means that extra messages are forwarded, as triggered by this high false positive

rate. Hence the delivery cost increases.

Delivery delay. Figure 6 shows that for the SASSY dataset, delivery delay in-

creases somewhat when removing nodes from the sender’s friends list. This in-

crease is only from about 4.8 to 5.8 hours when using −40% SSNR compared to

unmodified social-network routing. Indeed, if delivery delay is a concern, we may

also reduce delivery delay by adding nodes with SSNR.

For the other datasets, the difference is not significant: Figure 12 (NUS-L);

Figure 15 (NUS-R); and Figure 9 (Reality Mining) all show little (if any) correla-

tion between delivery delay and modification of the senders’ friends lists. If such

a difference exists, it is smaller than the noise — the error bars overlap within

each dataset for each set of SSNR parameters.

Summary. Finally, we observe that for all the datasets, it is possible to signifi-

cantly modify the size of the sender’s friends list (for example, by −40%), thus

increasing the privacy of the sender, and yet to still retain good routing perfor-

mance. Indeed, removing nodes may significantly reduce delivery cost — a ben-

eficial side effect while enhancing privacy. If delivery delay or ratio is more of a

concern, conversely, SSNR allows adding nodes to improve performance by these

metrics, again while enhancing privacy, though at the expense of increased deliv-

ery cost in this case.

We quantify the improvement in security in the next section.

6. Security discussion

The simulation experiments in Section 5 demonstrate that our schemes are

practical with respect to performance: we are able to obfuscate the friends lists
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used for routing without a large impact on opportunistic network performance.

We now consider the practicality of our schemes with respect to security — we

discuss the privacy gains in using our schemes, with reference to classes of attack

which are mitigated.

6.1. Security of OSNR

We first consider the OSNR scheme — where we “hash” the friends list of the

sender to a Bloom filter.

In simple social-network routing, an attacker may read the sender’s friends list

in plain text from one single eavesdropped message, as might an intermediate node

who has legitimately received a message for forwarding. By hashing the sender’s

friends list to a Bloom filter, we raise the bar for a curious, casual observer —

such as one of the sender’s friends who legitimately receives a message as part

of social-network routing. Our scheme keeps honest people honest. But we also

increase the effort required by a malicious attacker. By how much?

6.1.1. OSNR with single intercepted message

In this attack an attacker attempts to reverse the Bloom filter, i.e., deduce the

sender’s original friends list from the Bloom filter. The attacker does so by iter-

ating through the universe of elements that may be contained within the Bloom

filter, and testing the Bloom filter for membership of each of these elements. For

example, if a Bloom filter contains (salted) elements concatenated with Bluetooth

address, then to reverse the Bloom filter one should test each of the 232 (similarly

salted) Bluetooth addresses, for presence in the Bloom filter.

We tested how long it might take to reverse the Bloom filters used in Section 5

on one of our compute servers — a machine with two Intel Xeon L5320 processors
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(2x quad core at 1.86GHz). We were able to test approximately 214 Bluetooth

addresses (concatenated with salt) for presence in a Bloom filter per CPU core per

second. Iterating through the universe of Bluetooth addresses took 58 CPU-hours.

Since Bloom filters guarantee no false negatives, all of the addresses encoded

inside the Bloom filter would be found by such iteration through all possible el-

ements Bloom filters produce false positives, however, with a known rate ε —

e.g., we targeted ε = 1% in choosing the Bloom filter length in our experiments.

Therefore, the addresses truly encoded in the Bloom filter would be lost in the

sea of false positives: with 4.3B Bluetooth addresses, we would expect 43M false

positives. Thus an attacker would find it difficult to accurately deduce a node’s

friends list from eavesdropping a single message.

6.1.2. OSNR with multiple intercepted messages

We now consider an attacker who can intercept multiple messages. In our

OSNR scheme, each subsequent intercepted message would allow the attacker to

reduce the set of false positives (size f ) to a new subset of size≈ ε · f , each round.

Therefore, for Bluetooth addresses (232 possible addresses) and a false positive

rate ε = 1%, the expected number of false positives, f , after intercepting n distinct

messages is f = 232 ·0.01n.

To recover the original friends list of the sender, the attacker must intercept

sufficiently many messages, n, that f < 1. Rearranging the previous equation, this

is n = log0.01(2−32)' 4.8' 5.

So under the assumptions above, the attacker must intercept approximately

five distinct messages in order to recover the sender’s original friends list.

The bulk of the computational burden on the attacker is reversing the first

intercepted message’s Bloom filter. After that, the attacker need only test the
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exponentially-decreasing number of elements from the previous rounds against

newly-intercepted Bloom filters.

6.1.3. Implications of combined SSNR-OSNR

The combined SSNR-OSNR scheme is able to mitigate the eavesdropping at-

tack, but how many distinct messages must an attacker intercept in order to recover

the original friends list of a sender who is employing SSNR?

Section 5 shows that SSNR allows us to randomly remove 40% of the sender’s

true friends list per message without a major degradation in social-network routing

performance. Using −40% SSNR, the probability of each member in a friends list

appearing in a given message is 1−0.4 = 0.6. As the attacker intercepts a number

of messages n, the number of messages x in which a given member of a friends

list appears (with appearance being random per message) is therefore binomially

distributed, x∼ B(n,0.6).

Figure 16 shows the probability of the attacker identifying each friends list

node as n increases, according to different threshold values of x, again using

−40% SSNR. Using pure SSNR, the threshold is x ≥ 1 — there are no false posi-

tives. To identify 95% of friends list nodes, four messages must be intercepted.

In practice, though, we combine SSNR-OSNR. The false positive rate is now

defined by the Bloom filter. Using a ε = 1% as in our previous discussion, a

suitable threshold might be x ≥ 3 — the attacker may be confident that a friends

list node is truly identified if the node appears in three or more intercepted distinct

messages. Using this threshold, Figure 16 shows that the attacker must intercept

eight messages in order to identify 95% of friends list nodes.

Moreover, when combining SSNR-OSNR, the optimisation in Section 6.1.2

(discarding all addresses except those that were flagged up in previous rounds;
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Figure 16: Probability of identifying each node within the sender’s original social network after

applying SSNR (−40%), as a function of the number of distinct messages intercepted. Using

SSNR-OSNR, we consider the attacker as identifying a friends list node if that node appears in

three or more distinct intercepted messages. To identify 95% of nodes, the attacker must intercept

eight distinct messages.
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initially mostly false positives but with the true addresses mixed in too) is also de-

feated since false negatives are now possible, further increasing the computational

burden on the attacker.

6.1.4. Burden on the attacker

If an attacker must collect approximately eight messages in order to deduce

the original sender’s friends list, then how practical an attack is this?

Firstly, these messages need to be distinct. In OSNR, the Bloom filter is added

by the original sender at the time of message generation, and is not altered en-

route during routing. Therefore, distinct messages must be intercepted in order

to obtain messages with different Bloom filters — it is not useful to capture the

same message as it is routed through the network since the Bloom filter will be

unchanged. Most opportunistic network implementations, however, are likely to

employ bundle protocols which aggregate many application-layer data units into

few network-layer data units for forwarding [27], thus hindering the eavesdrop-

ping of multiple messages.

To collect these messages, the attacker could shadow the sender, but if this

were possible, then the attacker could directly observe the sender’s interactions

with other nodes and directly measure the sender’s social network, rendering the

attack redundant. An alternative strategy is to eavesdrop constantly in a well-

known busy spot. Again, if this were possible, then an attacker could directly

observe the social networks of many nodes.

Our schemes, therefore, are not infallible, but instead serve to raise the amount

of effort required for an attack. Instead of being able to discover a sender’s friends

list by intercepting a single message and then reading off the data in plain-text, the

attacker must now intercept multiple messages, and then devote multiple days of
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CPU time to the attack.

6.2. Linkability

While the bar for an attacker has been raised significantly for reversing a single

sender’s friends list, so too has the bar been raised much more for obtaining even

a relatively small portion of the whole social network.

The structure of the social network itself is sensitive information. For example,

Narayanan and Shmatikov have shown that it is possible to link individuals who

are members of different online social networks, based on no more information

than anonymised node-edge graphs of both social networks. [28] Anonymity of

social network participants is thus not sufficient for privacy, since the participants

may be linked to another social network in which they also participate.

Narayanan’s deanonymisation algorithm is described as being “robust to mild

modifications of the topology such as those introduced by sanitization”. This is

because it deanonymises nodes by starting out at known seeds whose with posi-

tions known in both networks, and then crawling outwards from those seeds to

find corresponding nodes in the two networks.

Thus, to be able to use this algorithm against an opportunistic network, an

attacker would now have to be able to deduce accurate friends lists for a significant

proportion of nodes close together in the social network. Crucially, the algorithm

cannot “jump the gap” between disconnected subgraphs, so deducing the friends

lists of some isolated nodes is not sufficient: the attack would only succeed if

large-scale deduction of all the friends lists for nodes within a connected sub-

graph of the social network were achieved by the attacker.

Such an attack would be difficult, but feasible, for a simple social-network

routing routing scheme. A single eavesdropped message would reveal the sender’s
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complete local friends list information. Thus, by sniffing a sample of messages,

the attacker may be able to gain enough information to reconstruct a fairly sizeable

connected subgraph of the complete social network.

Our SSNR-OSNR scheme prevents this attack from being successful — or, at

least, raises the bar very much higher for a potential attacker. The number of mes-

sages that must be sniffed is increased of the order of tenfold, since, as discussed

in the previous section, approximately eight distinct messages from each sender

must be intercepted to obtain the sender’s local social network neighbours (their

friends list) with some reasonable confidence. This must be repeated for each

sender.

It therefore appears that our scheme may make these linkability attacks diffi-

cult, and, we believe, impractical.

7. Related work

If nodes are to trust their data with any other nodes that they encounter, then

privacy is paramount. Few researchers, however, have studied privacy in oppor-

tunistic networks. The HiBOp scheme [29] proposes a key management solution,

where users are divided into communities and public-key cryptography is used

to secure communication within a community, while some nodes are chosen to

forward messages between communities. Key distribution and management in

such a scheme is very difficult in a mobile ad hoc environment, however, and may

impede the very feature which makes opportunistic networking so appealing —

the fact that nodes may forward to any node that they encounter. Thus we have

aimed to build privacy-enhancing schemes that do not require a public-key infras-

tructure. If nodes have to choose communities and register to obtain keys, as in
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HiBOp, then this may limit the number of potential nodes that may participate in

the network, and so limit its usefulness. Moreover, even within a scheme such

as that proposed for HiBOp, members of a community can observe the routing

tables of all other members of the community, and so many of the attacks that we

describe in this paper are still possible.

Shikfa et al. [30] also propose group-based cryptography for opportunistic net-

works, using multiple levels of cryptography to prevent data from being accessed

by different groups. They concentrate on protecting the application-layer data

payload, rather than the routing information as we do here.

Lilien et al. [31] explore privacy in opportunistic networks, but their definition

of an opportunistic network is akin to finding helper nodes in an ad hoc network,

rather than the mobile opportunistic network definition that we use here. They

list a number of privacy challenges and proposed solutions, including maintaining

a list of trusted devices, intrusion detection systems, and the use of public-key

infrastructure. Again, we believe that these systems would be impractical in a pure

opportunistic network and therefore investigating schemes which do not require

PKI has merit.

Aad et al. [32] present methods to improve anonymity within an ad hoc net-

work. These include using Bloom filters to compress and obscure a packet’s rout-

ing list, and a technique for combining multicast and onion routing. However,

they assume global routing information is available for the ad hoc network, which

we do not; and they do not carry out simulations to evaluate performance, as we

do here.

Another popular mechanism for enhancing privacy in networks is onion rout-

ing [33], where packets are routed through a group of collaborating nodes, thus
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mingling connections and making it difficult to determine the source of a commu-

nication. Le et al. [13] propose such a scheme for opportunistic networks. Onion

routing, however, does not prevent eavesdropping attacks from intermediate nodes

as we have described here, and Le et al.’s scheme still requires a PKI.

Obfuscation is widely used for enhancing privacy in Internet applications.

TrackMeNot [34] adds noise to a user’s search engine queries by generating fake

search queries to make it harder for a search engine provider to profile individual

users. Viejo and Castellà-Roca extend this idea by sending search queries through

an onion-like network of users comprised of a user’s social network friends [35].

Guha et al. [36] uses obfuscation to enhance privacy in social network sites. Users’

information is mixed with information from other SNS users to make it difficult

for an attacker to accurately profile an individual user. Dóra and Holczer [37]

extend this to opportunistic networks by obfuscating users’ interests in an op-

portunistic publish-subscribe application, in an attempt to prevent attackers from

identifying a user’s specific interests.

We have already discussed Narayanan and Shmatikov’s work on de-anonymising

social networks through comparison of an anonymised dataset to another avail-

able social network dataset [28]. Wondracek et al. [38] demonstrate that it is also

possible to deanonymise social network data if group membership information is

public, as is common on many social network sites.

8. Conclusions

Social network information is commonly used for improving routing perfor-

mance in opportunistic networks. In this paper we have presented two schemes

for enhancing privacy in such social-network routing systems. We find that it is
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possible to obfuscate a sender’s friends list by removing up to 40% of the nodes

from the social network, while still maintaining a typical mean delivery ratio that

is approximately 90% that of unaltered social-network routing. In addition we

have demonstrated that, by using Bloom filters, we can prevent eavesdropping of

social network information with a minimal effect on network performance.

We have evaluated these two schemes using three opportunistic network datasets:

one collected by ourselves, and the widely-used MIT Reality Mining and NUS

datasets. Although these datasets vary widely in many properties (including scale,

location and connectivity), our findings appear to hold for all three datasets, which

gives us confidence that our schemes would be deployable in a real-world op-

portunistic network. We have also considered attacks against our schemes, and

demonstrated the classes of attack which we may mitigate.
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