A Comparison of TCP Behaviour at High Speeds Using ns-2 and Linux

Martin Bateman, Saleem Bhatti, Greg Bigwood, Devan Rehunathan, Colin Allison, Tristan Henderson
School of Computer Science, University of St Andrews, St Andrews, UK
{mb, saleem, gjb, dr, colin, tristan} @cs.st-andrews.ac.uk

Dimitrios Miras
Department of Computer Science, University College London, London, UK
d.miras@cs.ucl.ac.uk

Keywords: ns-2, testbed, TCP, high-speed, fairness
Abstract

There is a growing interest in the use of variants of
the Transmission Control Protocol (TCP) in high-speed net-
works. ns-2 has implementations of many of these high-speed
TCP variants, as does Linux. ns-2, through an extension, per-
mits the incorporation of Linux TCP code within ns-2 sim-
ulations. As these TCP variants become more widely used,
users are concerned about how these different variants of TCP
might interact in a real network environment — how fair are
these protocol variants to each other (in their use of the avail-
able capacity) when sharing the same network. Typically, the
answer to this question might be sought through simulation
and/or by use of an experimental testbed. So, we compare
with TCP NewReno the fairness of the congestion control al-
gorithms for 5 high-speed TCP variants — BIC, Cubic, Scal-
able, High-Speed and Hamilton — on both ns-2 and on an ex-
perimental testbed running Linux. In both cases, we use the
same TCP code from Linux. We observe some differences be-
tween the behaviour of these TCP variants when comparing
the testbed results to the results from ns-2, but also note that
there is generally good agreement.

1. INTRODUCTION

ns-2 [1] is widely used in the research community to eval-
uate protocols in a simulation environment. Although other
simulators are widely available, ns-2 remains popular as it
is freely available, the source is available for inspection and
modification, and there is a large user community that pro-
vides contributions in the form of extensions that allow new
protocols and systems to be simulated. That same community
has expressed concerns over the process of evolution of ns-2
and the impact this might have had on how well ns-2 com-
pares to use of protocols in the ‘real world’ [4]. However,
ns-2 remains popular and development on ns-2 continues in
parallel with the major development under ns-3'. Meanwhile,
work by Wei and Cao [10] allows real TCP code to be used
in ns-2 simulations.

"http://www.nsnam.org/

It is important to understand in any specific case, just how
well, or not, a simulation (any simulation, not just one based
on ns-2) may relate to the real world scenario which it claims
to simulate. Arguably, this is of particular importance when
the scenario being simulated presents results for existing pro-
tocols (i.e. post hoc), rather than presenting results that con-
cern, say, a new or experimental protocol that is still in de-
velopment and is not yet widely deployed. This is because
such results could affect deployment decisions and use of real
world systems based on those results.

So, our aim in this paper is to examine how well the be-
haviour of TCP compares across ns-2 and a simple testbed,
using the same TCP code in each case, by the use of simple
experiments: measurements of throughput and evaluation for
the fairness of throughput between flows.

1.1. Structure of this paper

We start by presenting our scenario for evaluation and de-
fine the fairness metric we will use in Section 2, and then
go on to describe our configuration for the testbed and for
ns-2, and a description of our experiments in Section 3. We
then present our results in Section 4. We conclude in Section
5 with some comments on comparisons between testbed and
simulation studies.

Our key contributions in this paper are:

e A critical comparison of ns-2 against a testbed for a spe-
cific case of TCP high-speed performance tests which
use the same Linux TCP code.

o An evaluation of throughput fairness between TCP flows
operating at high-speed in simulation and on a testbed.

2. SCENARIO

Our study concerns high-speed TCP variants, specifically
those that are implemented and widely available in the Linux
kernel. There is growing interest in more widespread use of
these TCP variants as parts of the user community begin to
use more demanding applications (e.g. data-intensive Grid
applications). Users and especially administrators, however,
are concerned with the impact these variants would have on

the network. This is because they adopt different congestion
control algorithms to normal (NewReno) TCP; algorithms
that are potentially more ‘aggressive’ in their transmission be-
haviour. This is by design: the goal is to make use of available
network capacity that NewReno cannot utilise effectively due
to its relatively conservative congestion control behaviour.
More on the nature of this behaviour follow in the next sec-
tion. The use of congestion control in TCP has been the key to
the Internet’s stability, so any change to this behaviour mer-
its investigation. In order to investigate this behaviour, a re-
searcher may naturally turn to simulation with ns-2 in order
to generate a set of experiments that are easily manageable,
scalable, configurable and reproducible for their specific sce-
narios of interest, as reproducing and measuring those scenar-
ios at scale in a testbed may not be feasible.

Therefore, we evaluate the efficacy of the ns-2 simulations
for a very specific set of cases: we test the interaction between
TCP NewReno and 5 variants of high-speed TCP when oper-
ating over network paths and end-to-end capacity of 1Gb/s
and with various round-trip times (RTTs) - 50ms, 100ms,
200ms, 300ms and 400ms. On the end-to-end path, the flows
in question share a bottleneck link, where congestion occurs,
invoking the congestion control behaviour of the respective
TCP variant. That is, the TCP flow is operating over a net-
work path with a high bandwidth-delay product (BDP) and
competing for resources at a bottleneck on that path. Our ob-
jective is to measure how the TCP variants compete with each
other and how fair they are in their behaviour. We compare
fairness by measuring the end-to-end throughput of the flow
using a modified version of the well known tool, iperf, to
generate the flows and to report throughput values.

We compare the results from ns-2 to those from a testbed
using the same Linux TCP code in both cases. We use the ns-2
Linux enhancements [10] in order to import the TCP conges-
tion control implementations from the Linux kernel version
2.6.22.6 into ns-2. We configure a physical testbed and ns-2
with the same network topology and using the same Linux
kernel for sending and receiving nodes. This means that in
each of the two cases — simulation and testbed — the same
code will be used for the control of TCP flows generated.

So, we can change easily the congestion control algorithms
which are in use for direct comparison between the testbed
and ns-2 results. In this way, variations in implementation of
the congestion control algorithm are removed and only the
differences from the simulation and the testbed platform re-
main.

2.1. Fairness

Our key evaluation criteria is TCP-Friendliness: the fair-
ness that a new high-speed TCP variant exhibits towards
‘standard” TCP (NewReno) flows.

2http://dast.nlanr.net/Projects/Iperf/

We evaluate fairness for both the simulated and testbed en-
vironments. Key to our evaluation is a definition of the fair-
ness metric. We use the well-known Jain’s Fairness Index
(JFI) [2] to evaluate overall system fairness:

(E:Xh)z
FO= Nz M
where x,, is the measured throughput for flow n, for N flows
in the system. In our experiments, we compare the pair-
wise throughput of two flows, and evaluate fairness between
NewReno and each of the 5 other TCP variants (N = 2).

We evaluate these metrics by measuring the end-to-end
throughput of a flow as reported by the simulation and the
test-tools for our testbed, respectively. So, our evaluation
mechanism and our metrics are fairly simple but we believe
they give sufficient visibility of the observed behaviour in
both cases — simulation and testbed. We recognise that other
fairness metrics have been proposed for TCP (such as propor-
tional fairness and RTT fairness), and that other measures of
congestion control behaviour, such as time to convergence of
flows (e.g. using epsilon fairness) might also be considered.
We chose to use throughput fairness with a shared bottleneck
as it is well-understood, it is easy to measure throughput and
it is sufficient for our study.

2.2. High-speed TCP variants

In our work we use an experimental testbed that attempts to
control as many of the salient end-system factors as possible.
The specific TCP variants to evaluate were chosen using the
following criteria:

e protocols that have implementations that are readily
available for deployment at the time of writing.

e protocols that are being used or being considered for use
across the Internet as well in private IP networks.

e protocols that have attracted interest by the research
community.

e protocols that have been used in previous studies in order
than we can validate the configuration, calibration and
behaviour of our test-bed and simulation functions.

We have chosen BIC [11], Cubic [12], Hamilton TCP [9],
High-speed TCP [3] and Scalable-TCP [7]. These high-speed
TCP variants have attracted considerable interest from the re-
search community to evaluate their performance, identify the
need for modifications, and establish whether they are suit-
able for wider use on the Internet.

We provide in APPENDIX A brief definitions of the con-
gestion control algorithms of each of the high-speed protocols
evaluated in this work.

3. METHODOLOGY

We have taken great care to ensure that the ns-2 and testbed
configurations are as similar as possible and so we claim that
we are testing the same scenarios.

3.1. Testbed

Our testbed set-up is the well-known dumbbell arrange-
ment as depicted in Fig. 1 and used also in previous similar
studies [8, 5]. Whilst there are various criticisms that can be
levelled at this arrangement, our aim was not to show a pro-
duction network scenario but to provide a set-up that would
allow us to test the behaviour of the TCP variants when used
on real hardware in a way that is easy to compare with ns-2.
Indeed, this very simple testbed helps us to reduce the factors
of error or unknown behaviour that may affect the results.
We are also aware of the work within the IRTF Transport
Modelling Research Group3, who are also looking to define
mechanisms and metrics for evaluation of transport protocols,
including fairness. The ongoing work within the TMRG in-
cludes an Internet Draft which suggests that a dumbbell topol-
ogy is one scenario that can be used to evaluate transport pro-
tocol performance.

I variable I
ET T~ 1cus RTT 16bss
Sender 1 Oms — Sy — oms Receiver 1
s O < 1
e~ Oms netem GigE Oms gmes
Sender 2 router switch Receiver 2

Figure 1. Testbed confguration

The dumbbell configuration, shown in Fig. 1, consists of
two senders, two receivers and a router to provide the net-
work delay. All the nodes were Intel Xeon Dual Core 1.6GHz
with 2GB of DDR2 (667Mhz) memory and a PCI-X (64-
bit, 133Mhz) bus. All network connections were 1Gb/s full-
duplex Ethernet. The senders and receivers were running
Linux kernel version 2.6.22.6, while the router was running
Linux kernel version 2.6.18. The package netem* was used at
the router to introduce delay to the packet flows. On the netem
router, the network delay was split equally between the for-
ward and reverse paths. The two flows are sent from Sender 1
to Receiver 1 and from Sender 2 to Receiver 2, respectively.

The senders and receivers were configured for high-speed
TCP operation by setting the parameters shown in Table 1.

Units for all the parameter values above are in bytes, ex-
cept for txqueuelen and net.core.netdev_max_backlog which
are in packets. The parameters net.ipv4.tcp_rmem and
net.ipv4.tcp_rmem each have three values. These are, respec-
tively, the minimum, default and maximum values for the

Shttp://www.icir.org/tmrg/
“http://www.linux-foundation.org/en/Net :Netem

Linux kernel parameters values
net.core.rmen_max 524288000
net.core.wmem_max 524288000
net.ipv4.tcp _rmem 4096 104857600 524288000
net.ipv4.tcp_-wmem 104857600 524288000
txqueuelen 100000
net.core.netdev_max_backlog 100000
net.ipv4.tcp_timestamps
net.ipv4.tcp_window_scaling enabled
net.ipv4.tcp_sack
net.ipv4.tcp_no_metrics_save
net.ipv4.rfc1337

Table 1. Linux kernel parameters: TCP senders / receivers

TCP receive and TCP transmission window sizes. With the
TCP window scaling option, the initial window size is set to
the default value of 104857600 bytes (~100MB) but it is able
to expand up to the maximum window size of 524288000
(~500MB). In our test the maximum bandwidth delay prod-
uct (BDP) value was 400ms x 1Gb/s ~50MB.

These settings ensure that there is sufficient buffer space in
the end-system protocol stacks so that the end-system does
not drop packets and packet drops are due only to the end-
to-end capacity constraint imposed in the testbed. Also, the
settings ensure that TCP is not constrained by default trans-
mit (flow control) window size (64KB), which would make it
perform poorly where the BDP is large (greater than 64KB).
The MTU size was 1500 bytes, the default value.

3.2. Router configuration

The router was configured using Linux kernel version
2.6.18 with netem. This was used to control the RTT on the
end-to-end path. In order to ensure that the nefem router had
enough buffer space to handle the large window sizes of the
end-system TCP stacks, the kernel was setup as shown in Ta-
ble 2. The kernel parameter jiffies was set to 1000Hz allowing
the delay to be tuned to within 1ms.

Parameter value
Jjiffies 1000
net.core.rmen_max 524288000
net.core.wmem_max 524288000
txqueuelen 100000
net.core.netdev_max_backlog 2500

Table 2. Linux kernel parameters - netem router

The units of the parameters in Table 2 are the number of
buffers allocated by the kernel. The netem queues were con-
figured with a limit of 420000 packets.

3.3. Testbed calibration and validation
The RTTs emulated were 50ms, 100ms, 200ms, 300ms and
400ms. For each RTT value, the system was validated:

e by testing the RTT by the use of ping from sender to
receiver.

e by the use of iperf using UDP flows to ensure that a
packet-level throughput of 1Gb/s was possible.

In order to check the behaviour of our testbed set-up, we
generated single TCP flows and compared our observations
to similar studies conducted independently by Leith et al [8]
in 2003 and Ha et al [5] in 2006. We find that we have good
agreement with Ha et al [5] and some agreement with Leith
et al [8], though our tests are at higher data rates than these
previous studies. Note, however, that we use different equip-
ment and Linux kernel versions, and in the meantime some
changes will have been made by the developers to the TCP
code for the variants. So the best comparison is with the more
recent study [5].

3.4. Flow generation for the testbed

The TCP flows were generated using a modified version of
iperf v2.0.23, allowing us to switch easily between the TCP
variants on a per-flow basis.

Each experiment was run for 600 seconds. The first flow
was started at # = Os and the second flow was started at r = 60s
to help avoid initial synchronisation effects. The calculation
of JFI used the throughput reported by iperf from 120s to 600s
at 1s intervals, i.e. the first 119 measurements reported were
ignored, to give the flows time to reach steady-state.

Each experiment was run 5 times, with the mean of the 5
values taken as the measured value, and the minimum and
maximum values across the 5 runs plotted as error bars to
show the variation.

3.5. ns-2 set-up

We used ns-2 version 2.31 with the TCP Linux exten-
sion from Wei and Cao [10], running Linux Kernel version
2.6.22.6 (the same as the testbed sender and receiver nodes).
ns-2 was set to simulate a dumbbell network topology shown
in Fig. 2. The bottleneck bandwidth of 1Gb/s was applied at
the same time and on the same link as the variable RTT. The
simulations were performed with the TCP protocol settings
as documented in Table 3. The sizes are given in TCP ‘pack-
ets’, with a packet size of 1488 bytes this gives a window
size of 148,800,000 bytes (~141 MB), well above the BDP
for the paths that will be used. The queueLimit parameter was
applied to each path in the system, again using a value well
above the BDP for the path, and is the same as the txquelen

5 Available, upon request, from the authors.

parameter fro netem. The windowSize parameter is the same
value as txqueuelen on the sender and receiver nodes.

Parameter value
windowSize | 100000
queueLimit | 420000

Table 3. ns-2 TCP Parameters

We have configured two experimental networks, one simu-
lated and one testbed. We have configured in each case buffer
space that exceeds the BDP for the paths used in our exper-
iments, thus ensuring that ‘network’ buffering would not be-
come a constraint on the throughput of any of the TCP flows.

variable P
Sender 1 100 AT 1on/S Receiver 1
enaer oms g? g? ms
1t Y Y < 16bis
e —" Oms Ooms N

Sender 2 Receiver 2

Figure 2. Simulation configuration

4. RESULTS

When we observe typical graphs for the throughputs of the
pair-wise flows, we see that both flows reach high maximum
throughputs, as shown in Fig. 3. We show the TCP variation
under study for simulation and with the testbed. The compet-
ing NewReno flow which is omitted for clarity.

The results for Jain’s Fairness Index (JFI) in Fig. 4 all show
a good match between the flows generated on the simulation
and on the testbed: error bars for maximum and minimum val-
ues are shown on each point, but may be too small to be vis-
ible in all cases. We note, however, that there is a noticeable
difference between the mean values of the JFI, as highlighted
by the lines joining the points on the graphs, even though the
trends of the JFI values are consistent for the simulation and
the testbed.

The difference in fairness between the testbed and ns-2 is
between 0.04 and 0.21 with a mean difference of 0.087.

S. SUMMARY, CONCLUSION AND COM-
MENTS

We have performed a simple set of experiments compar-
ing several TCP high-speed variants, both in simulation and
in a testbed. We have deliberately kept the complexity of our
network configuration low in order to highlight the TCP be-
haviour rather than explore ‘realistic’ network scenarios. We
have also used a ns-2 extension to include the same TCP
code into the simulation as is used by the testbed. We no-
tice that typical behaviour over 5 runs is not significantly
different when mean values for Jain’s Fairness Index (JFI)

are considered across the experiments. However, it is clear
that there is some difference between the mean values of JFI.
Whether this can, with further experimentation, be shown to
be a statistically-significant difference is another matter (we
say more on this below). Comparing our results with previous
tests by other groups who have used the same network topol-
ogy, we can see that our testbed results are largely consistent,
although the other tests were conducted at lower data rates
and with different Linux kernel versions. So we believe that
for these experiments, ns-2 can be used to report behaviour
that reflects use of these protocols in operational use.
Our results show that:

o the behaviour of the individual TCP high-speed imple-
mentations show good agreement when run in ns-2 and
when run across our testbed.

e the behaviour of the pair-wise interaction between TCP
high-speed flows are very similar when run in ns-2 and
when run across our testbed.

e code implementing a given algorithm when run in ns-2
can be used, with the extensions from Wei and Cao [10]
to produce behaviour which is similar to that same code
running in Linux on a simple testbed.

e there is good fairness, as measured using JFI evaluated
using end-to-end throughput, between the high-speed
TCP variants and NewReno.

We are encouraged that using ‘real code’ within ns-2 re-
flects behaviour that is consistent with a simple testbed. We
believe, therefore, that there is great value in encouraging
capability within ns-2 that allows the inclusion of real code
taken from implementations of protocols.

For a general scenario, it is not clear that we can make,
by performing more experiments, through the usual experi-
mental techniques, a statistical inference about the compari-
son of ns-2 and the testbed. In this case, the variation of re-
sults from the testbed are such that we can consider the ns-
2 results and testbed results to be equivalent. However, with
a larger, more complex testbed, additional factors (e.g. CPU
scheduling, memory management, hardware variations, etc.)
may result in wider variations of results; it may not be pos-
sible to capture easily and accurately these factors within the
simulation. Additionally, for a network designer or network
operator, knowing the possible variation in capability within
a given scenario may be just as valuable as knowing what the
typical behaviour should be. So, it is not clear that we can
generalise easily to conclude that it is possible to simulate
larger testbeds with the same degree of accuracy as we have
in our simple scenario.

We observe that if we consider the throughput and fair-
ness values in these pair-wise experiments, both simulation

and testbed, there does not appear to be a significant differ-
ence between TCP NewReno and the high-speed variants.
However, the fairness measurements, made across the dura-
tion of the test, masks the overall higher throughput of the
high-speed variants compared to NewReno. We do observe,
however, that at higher RTT (higher BDP), we see greater in-
stability between some of the flows in pair-wise tests, seen has
higher variations (error bars) in the JFI values of Fig. 4. Ad-
ditionally, our other observations (not reported in this paper)
show that NewReno needs much tuning of the end-system
stack in order to operate effectively at high-speeds, and even
then its throughput starts to drop when the RTT (and so
the BDP) increase (see the low throughput at 400ms for the
testbed flow in Fig. 3(a)).

5.1. Ongoing and future work

We have also conducted pair-wise evaluations between
the various high-speed variants, not just comparisons to
NewReno, which we will report in future work. We are also
currently looking at evaluating fairness for SCTP and DCCP
in comparison to TCP, and also the use of other metrics, apart
from JFI, for evaluating fairness.

ACKNOWLEDGEMENTS

The authors would like to express their great appreciation
for all those who have dedicated their time and energy to cre-
ating, maintaining and furthering the development of ns-2,
and those who have undertaken the task of creating ns-3.

REFERENCES
[1] ns-2 http://nsnam.isi.edu/nsnam/.

[2] D. Chiu and R. Jain. Analysis of the increase/decrease
algorithms for congestion avoidance in computer net-
works. Computer Networks and ISDN, 17(1):1-24, June
1989.

[3] S.Floyd. Highspeed TCP for large congestion windows.
RFC 3649, Dec 2003.

[4] S.Floyd and V. Paxson. Difficulties in simulating the in-
ternet. IEEE/ACM Transactions on Networking, 9:392—
403, 2001.

[5]1 S. Ha, Y. Kim, L. Le, I. Rhee, and L. Xu. A step
toward realistic performance evaluation of high-speed
TCP variants. In Fourth International Workshop on Pro-
tocols for Fast Long-Distance Networks (PFLDNet06),
Feb 2006.

[6] V. Jacobson and M. Karels. Congestion avoidance and
control. In ACM SIGCOMM, Aug 1988.

[7] T.Kelly. Scalable TCP: Improving performance in high-
speed wide area networks. SIGCOMM Computer Com-
munication Review, 33(2):83-91, 2003.

[8] Y.-T.Li, D. Leith, and R. Shorten. Experimental evalua-
tion of TCP protocols for high-speed networks. Hamil-
ton Institute. To appear in Transactions on Networking.

[9] R. N. Shorten and D. J. Leith. H-TCP: TCP for high-
speed and long-distance networks. In Fourth Interna-
tional Workshop on Protocols for Fast Long-Distance
Networks (PFLDNet06), Feb 2006.

[10] David X. Wei and Pei Cao. NS-2 TCP-Linux: an NS-
2 TCP implementation with congestion control algo-
rithms from Linux. In WNS2 ’06: Proceeding from
the 2006 workshop on ns-2: the IP network simulator,
page 9, New York, NY, USA, 2006. ACM Press.

[11] L. Xu, K. Harfoush, and I. Rhee. Binary increase con-
gestion control for fast long-distance networks. In IEEE
INFOCOM, Mar 2004.

[12] L. Xu and I. Rhee. CUBIC: A new TCP-Friendly high-
speed TCP variant. In Third International Workshop
on Protocols for Fast Long-Distance Networks (PFLD-
Net06), Feb 2005.

APPENDIX A

We assume the reader is familiar with basic congestion
control in TCP, using a congestion window (cwnd), Additive
Increase Multiplicative Decrease (AIMD) behaviour [6]:

OnACK : cwnd «+—

OnLoss :cwnd «+— B.cwnd

cwnd + o

with =1 and B =0.5.

BIC TCP

Binary Increase Congestion control TCP — BIC TCP [11] —
uses a binary search algorithm between the window size just
before a reduction (W,,,,,) and the window size after the re-
duction (W,,;,). If wy is the midpoint between W,,;,, and Wy,
then the window is rapidly increased when it is less than a
specified distance S, from w; and grows more slowly when
it is near wy. If the distance between the minimum window
and the midpoint is more then S,,,4x, the window is increased
by Siax, following a linear increase. BIC reduces cwnd by a
multiplicative factor . If no loss occurs, the new window size
becomes the current minimum, otherwise, the window size
becomes the new maximum. If the window grows beyond the
current maximum, an exponential and then linear increase is
used to probe for the new equilibrium window size.

Cubic TCP

Cubic TCP [12] uses a cubic function to control its con-
gestion window growth. If W,,,, is the congestion window
before a loss event, then after a window reduction, the win-
dow grows fast and then slows down as it approaches W,,,y.
Around W,,,,,, the window grows slowly, again accelerating as
it moves away from W,,,,. The following formula determines
the congestion window size (cwnd):

cewnd =C(T *K)3 + Winax
where C is a scaling constant, 7 is the time since the last

loss event and K = 1/ Wmux%, where B is the multiplicative
decrease factor after a loss event. C and [are set to 0.4 and 0.2
respectively. To increase fairness and stability, the window is
clamped to grow linearly when it is far from W,,,,.

Hamilton TCP (HTCP)

Hamilton-TCP (HTCP) [9] modulates the normal AIMD
parameters as a function of the elapsed time A since the last
congestion event.

OnACK : cwnd M

cwnd
OnLoss : cwnd «— gp(B).cwnd

cwnd +

where:
(1 A<AL
JulA) = { max(F(A)Tpin, 1) A > AL
[os | PR > A
gB(B) = . T, .
min(7%2,0.8) otherwise

Ay is a threshold such that the standard TCP algorithm is ap-
plied if A < A7, and a quadratic function fy is used: f, =
1+ 10(A — Az) +0.25(A — Ar)?. Typin and Ty, are, respec-
tively, the minimum and maximum round-trip times seen by
the flow, and B(k + 1) is the maximum bandwidth measure-
ment during the last congestion epoch.

Highspeed-TCP

Highspeed-TCP [3] modulates its increase and decrease
parameters as a function of the current value of cwnd. The
higher the current value of cwnd, the higher its additive in-
crease for a lossless RTT time interval. It also uses a smaller
multiplicative decrease coefficient in response to a loss event.

OnACK : cwnd — cwnd +a(cwnd) /cwnd

OnLoss : cwnd «— b(cwnd).cwnd

Highspeed-TCP employs an increasing logarithmic func-
tion for a(cwnd) and a decreasing logarithmic function for
b(cwnd). The AIMD parameters revert to standard TCP val-
ues (1 and 0.5 respectively) if cwnd is below a low threshold.

Scalable-TCP

Scalable-TCP [7] tackles the problem of the long recov-
ery time of standard TCP over large BDP links by making
the process of updating its congestion window independent
of the congestion window value at any time. The generalised
Scalable-TCP modifies the congestion window as:

OnACK :cwnd +— cwnd+ o

OnLoss :cwnd +— B.cwnd

where o and [} are constants, with a,e(0,1) (the recom-
mended values are a = 0.01 and = 0.875). Scalable-TCP
reverts to the standard TCP congestion window update algo-
rithm when its congestion window is smaller than a certain
threshold, the legacy congestion window (Icwnd).

NewReno 400 ms RTT Simulation & Testbed

1200 T T
Reno Simulation
Reno Testbed -----—--
1000
800 {

(a) NewReno

Highspeed 400 ms RTT Simulation & Testbed
1200

Highspeed Simulation
Highspeed Testbed -------

1000

800 {

i
100 200 300 400 500 600

(b) Highspeed

Scalable 400 ms RTT Simulation & Testbed

1200 T T
Scalable Simulation
Scalable Testbed -------
1000 B

"
Hsi
4

i
I
f

i f Ml uw- M \ il y'w lu i
I

200 B
0 1 1 1 1 1
0 100 200 300 400 500 600
(c) Scalable
BIC 400 ms RTT Simulation & Testbed
1200 T T
BIC Simulation
BIC Testbed -------
1000 b
800
600
400
200 B
0 Il Il Il Il Il
0 100 200 300 400 500 600
(d) BIC
Cubic 400 ms RTT Simulation & Testbed
1200 T T T
CUBIC Simulation
CUBIC Testbed -------
1000
800
600
400
200
0 Il Il Il Il Il
0 100 200 300 400 500 600
(e) Cubic
Hamilton 400 ms RTT Simulation & Testbed
1200 T T T T
Hamilton Simulation
Hamilton Testbed -------

1000 B

800

600

e i i

400

0 100 200 300 400 500 600

(f) Hamilton

Figure 3. Throughput

11

1.05

0.95

0.9

Jain’s Fairness

0.85

0.8

0.75

0.7

11

1.05

0.95

0.9

Jain’s Fairness

0.85

0.8

0.75

0.7

11

1.05

0.95

0.9

Jain's Fairness

0.85

0.8

0.75

0.7

Jain’s Fairness NewReno versus NewReno

Testbed ——
Simulation ---x--- |

50 100 150 200 250 300 350 400
RTT (ms)

(a) NewReno vs NewReno

Jain’s Fairness NewReno versus Scalable

T T T T T
Testbed —+—
Simulation ---x---

50 100 150 200 250 300 350 400
RTT (ms)

(c) NewReno vs Scalable

Jain’s Fairness NewReno versus Cubic

‘I"estbed A
Simulation ---x---

50 100 150 200 250 300 350 400
RTT (ms)

(e) NewReno vs Cubic

Figure 4. Jain’s Fairness Index

Jain's Fairness

Jain's Fairness

Jain’s Fairness

11

1.05

0.95

0.9

0.85

0.8

0.75

0.7

11

1.05

0.95

0.9

0.85

0.8

0.75

0.7

11

1.05

0.95

0.9

0.85

0.8

0.75

0.7

Jain’s Fairness NewReno versus Highspeed

‘ ‘ ‘ ‘ Testbed ——
Simulation ---x--- |

50 100 150 200 250 300 350 400
RTT (ms)

(b) NewReno vs Highspeed

Jain’s Fairness NewReno versus BIC

T T
Testbed —+——
Simulation ---x---

50 100 150 200 250 300 350 400
RTT (ms)

(d) NewReno vs BIC

Jain’s Fairness NewReno versus Hamilton

festbed A
Simulation ---x---

50 100 150 200 250 300 350 400
RTT (ms)

(f) NewReno vs Hamilton

