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Abstract—Many new transport protocols are being defined,
including, for example, variants of the Transmission Control
Protocol (TCP), to better match the requirements of new ap-
plications. A key issue in the evaluation of protocol flows, in
terms of their performance, is how fair they are to other flows.
Specifically, it is important to understand how a mix of existing
and/or new protocols will interact with each other when using
the same network resources. Such observations help to inform
protocol design, and allow an assessment of potential impacts
on users. We present a simple, yet effective, methodology for
examining a specific case of inter-flow fairness based solely on
measurements of flow performance. As well as using an existing
fairness metric, we propose a new metric which provides a richer
information summary for the evaluation of fairness.

I. INTRODUCTION

The additive increase multiplicative decrease (AIMD) be-

haviour [10] of the Transmission Control Protocol (TCP) is

often credited as a major factor in the stability of today’s

Internet. This causes TCP to backoff when it experiences

congestion, cutting its transmission rate to half, and then only

increasing its transmission rate by one segment size every

round trip time (RTT). However, this conservative behaviour,

coupled with TCP’s mode of operation (reliable, ordered, byte-

stream), is not necessarily suitable for all applications, and so

researchers are interested in designing new protocols to meet

new application requirements. A related area of interest is the

high-speed operation of TCP. Specifically, the operation of

TCP over network paths with a high bandwidth-delay product

(BDP) causes slow recovery of transmission rates, after a

congestion event. New variants of TCP have thus been defined

so that this behaviour is improved on high-BDP paths.

TCP’s behaviour allows flows to adapt their transmission

rate in order to match network conditions. Consequently,

traffic that does not behave in the same manner, and is more

aggressive in its transmission behaviour, will cause TCP (and

TCP-like) flows to back-off ‘unfairly’ when they share the

same network path. To address this concern, in a best-effort

Internet Protocol (IP) network (with no other policing or rate

control in place), new and existing protocols should exhibit

‘fairness’ towards TCP flows1 and towards each other so that

they do not unfairly limit the rate of other flows.

1The notion of “TCP friendliness”: http://www.psc.edu/networking/
projects/tcpfriendly/

But how can we assess ‘fairness’ in the behaviour of such

protocols? A popular measure of fairness for network flows is

Jain’s Fairness Index (JFI) [4]. While this is a general metric,

by using the end-to-end throughput of the flows sharing (the

whole or part of) a network path, system-wide (i.e., across all

flows) fairness can be assessed. Starting with Jain’s Fairness

Index, then introducing a new metric – Normalised Resource

Usage (NRU) – we propose a simple but practical methodology

for examining the fairness of flows. Our key contributions are:

• a new metric with which to assess the dynamics of inter-

protocol fairness, convergence time and stability.

• a measurement-based approach which allows the new

metric to be used easily.

We first introduce the idea of fairness for flows (Section

II). We then define our new metric (Section III) and describe

our methodology for evaluation, including our testbed (Sec-

tion IV). Section V presents our experiments, conducted as

pair-wise tests, firstly examining intra-protocol behaviour –

how flows of the same protocol interact with each other –

and then Section VI demonstrates inter-protocol behaviour

by examining the interaction between our choice of subject

protocol (DCCP/CCID2) and two other protocols (NewReno

and CUBIC). We conclude with a short discussion of the

limitations of our approach (Section VII).

II. ASSESSING INTER-FLOW FAIRNESS

The Transport Modelling Research Group (TMRG) of the

IRTF2 presents the criteria by which one might make rigorous

and complete assessments, notably comparative assessments,

of transport protocols [5]. The following are noted (amongst

others) by the TMRG as desirable metrics for assessing the

performance of transport flows:

• inter-flow fairness: how are resources shared between

different flows?

• stability: is the protocol behaviour stable, or given to

oscillatory behaviour?

• convergence time: how long does it take, after some

epoch, for flows to converge to fairness (at least to within

some tolerance value of fairness)?

Our intention is to demonstrate a methodology for measur-

ing inter-flow fairness that is easy to implement. We show how

2http://www.icir.org/tmrg/



fairness, as evaluated using end-to-end performance measure-

ments (we chose throughput), can give simple and practical

assessments of stability and convergence time.

A. What is fair?

The notion of ‘fairness’ in the use of resources has been

much debated within the literature. Having a fair share of a

resource is important where the resource demands of multiple

flows sharing the resource are not met. In the absence of any

other resource controls in the network, this means that there is

at least one point along the end-to-end path where congestion

is occurring, and we may determine how the resource is being

shared by evaluating the resource distribution across the flows

on that (part of) the path. For example, in the case of transport

protocol flows sharing a bottleneck link on an end-to-end

path, we could evaluate the way that the capacity is shared

at the bottleneck (a local view), or the end-to-end throughput

achieved for each flow sharing the bottleneck (a global view).

B. Definitions of fairness

What is a fair share of a resource? There are several well-

known definitions of fairness, and we take the list below from

the work of the TMRG.

In max-min fairness [11], each flow’s throughput is at least

as large as that of all other flows which have the same

bottleneck. In this scheme each flow’s demand is met, with

the minimum demand (request for allocation) achieving the

maximum allocation of resource. This assumes that the flow’s

demand is known, or (in the absence of this knowledge or no

other resource usage model), that all flows effectively receive

an equal share of the resource.

The goal of proportional fairness [12] is to maximise the

utility function U = ∑
N
1 logTn for a given set of N flows,

where Tn is the throughput of flow n. However, the implicit

assumption that the utility can be modelled as a log function

has not been justified.

Of course, weighted versions of max-min and proportional

fairness are also possible, to reflect, for example, different

assignments of capacity. With both max-min fairness, and

proportional fairness, there is also the assumption that resource

allocation can be controlled. In a best-effort IP network, we are

typically unable to control resources, but we may be able to

measure usage of resources, especially (but not exclusively)

at end-systems. In our aim to create a simple and practical

methodology for assessing fairness, it would be beneficial to

use a metric that is easily facilitated through some measure-

ment related to a flow’s performance, e.g. measurement of a

flow’s end-to-end throughput.

Whilst the metrics listed above focus on throughput, other

proposals suggest using different measures to assess fairness.

For example, there are proposals to use end-to-end delay for

file transfers [14], or some notion of ‘cost’ (e.g., [3]). We

choose to use end-to-end throughput, as it remains applicable

to assessment of flow performance, is widely used, is easily

understood and is straightforward to measure. However, our

metric is general and could also be applied using end-to-end

delay or cost, if required.

As mentioned above, Jain’s Fairness Index (JFI) [4] is

widely used for assessing system-wide fairness, as in Equation

(1), where, 0≤ J ≤ 1, N is the number of flows, rn is the value

of the resource attribute being assessed for flow n, e.g. rn is the

measured end-to-end throughput. J = 1 means there is fairness

across all flows; J = 0 indicates no fairness.

An obvious approach to examining system-wide fairness

over time is simply to evaluate the JFI at given instances during

the period of interest, as in Equation (2), where t, in practice,

is discrete. rn(t j) is then an approximation of throughput as

determined at time interval t j, and evaluated over the period

(t j, t j−1), t j > t j−1, where t j−1 is the previous time at which

an approximation was determined. For our experiments, t was

every second. So, J is the mean value of J(t) values over a

given time period.

J =

(

∑
N
n=1 rn

)2

N ∑
N
n=1 r2

n

(1)

J(t) =

(

∑
N
n=1 rn(t)

)2

N ∑
N
n=1 rn(t)2

(2)

The definition of JFI means that it may be difficult to

determine the degree of relative unfairness between the flows.

To illustrate, in Figure 1 we have created an artificial situation

with two flows. Flow 2 is held constant at 100 and the value

of Flow 1 is varied from 1 to 10000 (the units are immaterial).

The plot shows the value of JFI (Equation 1) as the ratio Flow

1 / Flow 2 changes: the ratio has a range of four orders of

magnitude, whilst the JFI has the range [0.51,1.00].

Figure 1. The range of JFI for two flows, Flow 2 = 100 (no units)

III. RESOURCE USAGE AND RELATIVE CAPABILITY

An implicit assumption in JFI is that all of the processes

being measured are equally capable of consuming the resource

for which they are competing, and this is indeed the general

assumption made in previous work [9], [15], including our

own [1], [16]. However, when examining network flows, this

is not necessarily true: some protocols may attain better

performance than others given the same network conditions.

It is thus necessary to take into account the flows’ actual

capabilities, in terms of the resources that it is possible for

a flow to consume. That is, when making direct comparisons

between resource consumption, JFI does not take into account

the relative capability of the processes that are being evaluated,



and so biases may result. So, we propose a different metric

when considering fairness, one that is designed to be simple

but allows:

• weights to be applied that reflect relative capability, given

specific resource provisioning.

• comparative assessments to be made, based on relative

capability.

Further, we choose to reflect the following characteristics

in the output of our metric, in comparison to JFI:

• to be able to make comparisons of fairness on a per-flow

basis, not just a system-wide basis.

• to enable an assessment of fairness over time (as well

as a summary statistic), allowing observation of per-flow

and system-wide dynamics.

A summary of the important definitions is given in Table I.

Defn Name Eqn

Un(t) Normalised Resource Usage (NRU) 3
Rn(t) Resource Share Ratio (RSR) 4
Un flow NRU (mean of the set of values {Un(t)}) 5

Defn Name Eqn Defn Name Eqn

US NRU tuple 6 Sn flow stability 9
UN+ fair NRU 7 SN system stability 10
UN− unfair NRU 8 TU convergence time 11

Table I
SUMMARY OF IMPORTANT DEFINITIONS

A. Normalised Resource Usage (NRU)

In order to provide a richer view of the fairness information,

we introduce a metric which is based on the ratio of resource

usage of an individual flow with respect to its expected

capability: the Normalised Resource Usage (NRU). The NRU

metric, Un(t), for a flow n with throughput rn(t) at time t is

defined in terms of the Resource Share Ratio (RSR), Rn(t):

Un(t) = 10log10(Rn(t)) (3)

Rn(t) = wn(t)rn(t) (4)

where wn is a weight which reflects the relative capability of

the flow under the conditions being examined. Key to this

metric is the evaluation of wn(t), which we address in due

course (Section V-A). The use of the 10log10() deciBel term

is for convenience of representing large and small values.

When Un(t) = 0, then flow n is receiving a fair share of the

available resource. When Un(t) < 0, then flow n is receiving

less than its fair share of the resource. When Un(t) > 0, flow

n is receiving more than its fair share. This makes it easy to

make relative comparisons of fairness between flows: if any

flows have U(t) < 0, then they are receiving less than their

fair share of the resource, compared to their expected resource

usage, regardless of the performance of other flows.

For a flow n with a set of values Un(t), over a given time-

period, we can generate a summary by taking the mean, Un,

of the values in Un(t). We call this the flow NRU:

Un = {Un(t)} (5)

B. System-wide summaries

While time-based data sets let us view detailed dynamics,

system-wide summaries are also important to allow compar-

ative analyses to be made. We use our definition of Un(t) to

generate summaries as follows.

Assuming a system has N flows, 1 ≤ n ≤ N, a system-wide

summary could be obtained by taking the mean, UN , of Un for

all N flows. However, such a mean could hide unfairness, as

positive and negative values of Un would cancel out. So, we

produce the system NRU tuple:

US = 〈UN+,UN−,SN〉 (6)

UN+ = {Un+},{Un+} ⊂ {Un}∀Un ≥ 0 (7)

UN− = {Un−},{Un−} ⊂ {Un}∀Un < 0 (8)

where UN+ is the mean of the fair (zero) or better (positive)

flow NRU values, and is called the fair system NRU; UN− is

the mean of all the unfair (negative) flow NRU values, and is

called the unfair system NRU; and SN is the system stability of

all the flow NRU values, as explained in Section III-C, below.

UN+ UN− Case Comment

unfairness
- -ve A all flows unfair

+ve -ve B some flows fair or better,
some flows unfair

0 -ve C some flows fair, some
flows unfair

fairness
+ve - D all flows fair or better
0 - E all flows fair

Table II
INTERPRETATION OF SYSTEM NRU VALUES

To explain the use of UN+ and UN−, we refer to Table II. The

combination of values (“−” denotes no value) can be grouped

into those combinations that indicate a fair system and those

that indicate unfairness. In the “Comment” column, ‘fair’ and

‘unfair’ are compared to the performance of the flows when

the individual flows are run in a fair system. For Case A,

there are no flows that have fair treatment, so the system as a

whole is unfair. For Case B, some flows get more than their fair

share and some less – so something in the system and/or the

behaviour of some of the flows is causing unfairness to other

flows. In Case C, no flows are getting more than their fair

share, but some are getting less, so something in the system-

wide behaviour or the behaviour of the flows themselves, is

causing the unfairness. For the remaining two cases, all flows

are either performing as well as in a fair system (Case E), or

some are performing better than in the fair system (Case D).3

JFI cannot make this kind of distinction – it only indicates

whether the system as a whole is fair. Additionally, use of

the deciBel units allows us to make comparative performance

analyses using familiar engineering semantics, which is not

possible with JFI.

3This latter case is included for the sake of completeness, but in practical
situations, it may not occur.



C. Stability

For examining stability, we use the magnitude of the co-

efficient of variance (CV) (the CV is also used in [6], [9]).

For a single flow n, with flow NRU of Un and flow standard

deviation σn across the set of values {Un(t)}, we define the

flow stability as:

Sn = |σn/Un| (9)

Lower values of Sn indicate better stability. For evaluating

system-wide stability, we define the system stability as the

mean of the set of flow stability values:

SN = {Sn} (10)

D. Convergence time to fairness

In order to allow the use of Un(t) for determining when

fairness has been established, we consider both system-wide

convergence time and inter-flow convergence time. We assume

an epoch, te, at which a change in the system occurs (e.g., a

new flow is introduced, or a resource change occurs along

the path). For the set of values {Un(t)}, we define the flow

convergence time to fairness TU as:

TUn = tUn − te (11)

{Un(t = tUn)} ≥ Uc (12)

For our experiments we chose Uc = −0.46 (equivalent to an

RSR value of 0.90), representing a maximum unfairness of

10% for the flow. That is, the time taken, from some epoch,

for the flow to come to a point where it is within 10% of its

expected throughput. Of course, the user is free to chose other

values of Uc as appropriate.

For a subset of M flows, with a corresponding set of

NRU for flows UM = {{U1(t)}, ...{UM(t)} (for M < N), we

define the inter-flow convergence time to fairness by replacing

{Un(t)} in Equation 12 with {Um(t)}. For the system conver-

gence time to fairness, we set M = N. We leave the choice of

te, the subset of flows, and the value of Uc to the user, based

on his/her own context and requirements.

IV. METHODOLOGY

Note that while our intention is to demonstrate our new

metric, we feel that it is important to use a testbed and real

protocols to provide confidence that our metrics can be used

in practice. So, we use data from our ongoing work [2].

We take a practical approach, generating data flows using a

version of the tool iperf 4, modified to report additional TCP

state.5 We transmitted flows over a simple testbed, sending two

flows over a single bottleneck link. This allows observations of

the end-to-end behaviour of the flows over the bottleneck link,

and measurement of their relative performance. We evaluated

4http://dast.nlanr.net/Projects/Iperf/
5This modified version of iperf is available from the authors.

how fair the resource share was for the two flows by using

the end-to-end throughput achieved by each flow, as reported

at 1s intervals by iperf .

To demonstrate our approach, we choose three transport

protocols: TCP NewReno, CUBIC [18] and CCID2 [8] of

the Datagram Congestion Control Protocol [13]. Our choice

is arbitrary – we have previous experience of using these

particular protocols for measurement-based analysis, and so

we are familiar with their behaviour. TCP NewReno is the

“standard” TCP; CUBIC is currently the default version of

TCP on Linux; CCID2 is on the IETF Standards Track and

an implementation is available in the Linux kernel.

A. Testbed

Our testbed set-up was the well-known dumbbell arrange-

ment as depicted in Figure 2 and used in previous similar

studies [9], [15]. This simple testbed helps to reduce the

factors of error or unknown behaviour that may affect the

results and concentrate on the protocol behaviour. As noted

in [7], “Simple topologies, like a ‘dumbbell’ topology with one

congested link, are sufficient to study many traffic properties.”

Full details of the testbed are given in [2].

The testbed consisted of two senders, two receivers and

a router to provide the network delay and bottleneck. All

network connections were 100Mb/s full-duplex Ethernet. Our

measurement runs consisted of generating two flows, using

iperf , for a pair-wise comparison: Flow 1 was from Sender 1

to Receiver 1, and Flow 2 was from Sender 2 to Receiver

2. The duration of each measurement run was 300s, with

Flow 1 starting at 0s, and Flow 2 starting at 30s to avoid

initial synchronisation effects. After some calibration tests,

we performed 25 measurement runs for each of the TCP

protocols running against CCID2 at each of the following RTT

values: 25ms, 50ms, 75ms, 100ms, 125ms, 150ms, 175ms,

200ms. The choice of CCID2 as the protocol against which

comparisons were made was arbitrary but sufficient for our

needs; we could have chosen to compare against either of the

other two protocols, or conducted a complete set of pair-wise

experiments across all the protocols.

The senders and receivers ran Linux kernel version 2.6.22.6,

and we used “out-of-the-box” configuration for the end sys-

tems6, rather than tuning the stack for high-speed operation

(as in [1], [9], [15]), in order to gauge the performance under

(arguably) the most likely configuration of the end-systems.

Figure 2. Testbed configuration

We configured iperf to report throughput values at 1s inter-

vals, and evaluated J(t) (Equation 2) and Un(t) (Equation 3)

for each throughput measurement. Flow 2 started at t = 30s,

6CCID2 was configured as recommended in http://www.linux-foundation.
org/en/Net:DCCP.



so we used values from t = 60s (to permit flows to stabilise) to

t = 300 (the end of the measurement run) in order to calculate

values for J(t), U(t), and other metrics.

V. INTRA-PROTOCOL BEHAVIOUR

In this section, we describe the behaviour of two instances

of the same flow: as well as showing typical behaviour, this

allows us to establish the weighting, wn(t) to be used in

Equation 4. Note that we have used two flows in order to

present a simple and clear discussion, but our methodology can

be applied to more than two flows. We performed experimental

runs of the protocols at each of the RTT values listed earlier.

We start Flow 1 at t = 0s and Flow 2 (of the same protocol)

at t = 30s, and then make our evaluation from t = 60s. Table

III shows the mean values recorded over 5 runs.

RTT (ms)
25 50 75 100

Flow 1 2 1 2 1 2 1 2

NewReno 45 49 42 51 42 52 43 51

CUBIC 42 52B 51 43 47 45 44 48D

CCID2 43A 51 46 47 44 50 45C 48

RTT (ms)
125 150 175 200

Flow 1 2 1 2 1 2 1 2

NewReno 47 47 47 47 47 46 43 43

CUBIC 45 46 42 46 46 41 41 41

CCID2 39 40 36 38 30 30 33 32

Table III
THROUGHPUT VALUES (MBITS/S) FOR TWO FLOWS OF THE SAME

PROTOCOL (MEAN OVER 5 RUNS, FROM t = 60s TO t = 300s)

A. Weights for NRU

The self-fairness tests form an important distinguishing

feature in our methodology and use of our new fairness metric:

they are used to assign weights (Equation (4)) that reflect

each flow’s capability to consume the available resource. From

Equation (4), we define:

wn(t) = 1/Rrn(t) (13)

wn = 1/Rrn (14)

where Rrn(t) is the expected throughput of that flow under

the conditions being examined. Equation (13) is a general

expression, and we simplify this for our needs by using

Equation (14), which represents the weight as a scaling factor,

evaluated from the mean throughput. In our case, the value of

wn for each flow is taken from the mean of the two values

(Flows 1 and 2) in Table III, at each RTT value.

VI. INTER-PROTOCOL BEHAVIOUR

We now examine the use of Normalised Resource Usage.

We look at the interaction of our chosen protocols by exam-

ining the behaviour of two different flows across the testbed.

Flow 1 was started at 0s and was a CCID2 flow. Flow 2 was

started at 30s and was NewReno or CUBIC. We executed

25 runs of each pair-wise experiment for each of the RTT

values as explained in Section IV-A. We recorded the end-to-

end throughput reported by iperf at 1s intervals from t = 60s

(allowing 30s for Flow 2 to stabilise) to t = 300s (the end

of the experimental run). These throughput values were used

with Equation (1). We also noted the mean throughput of the

two flows over the 25 runs.

A. Summary of observed behaviour

To summarise the behaviour, the values of JFI generated

using Equation (1) are given in Table V (the mean JFI values

and CV over 25 runs) and shown in Figure 3. Table IV gives

the mean throughputs over 25 runs for each protocol, where

Flow 1 in the table is always CCID2 and Flow 2 is the

other flow (NewReno or CUBIC). We note that the fairness of

CCID2 and NewReno is good across the range of RTT values

examined, and this is encouraging as it meets a goal of CCID2

to be “TCP-like”. However, we observe that CUBIC has poor

fairness with CCID2 beyond an RTT value of 25ms, with the

TCP variant using more capacity than CCID2.

RTT (ms)
25 50 75 100

Flow 1 2 1 2 1 2 1 2

NewReno 56 38 55 39 55 39 52 41

CUBIC 39E 55F 26 67 18 74 17G 73H

RTT (ms)
125 150 175 200

Flow 1 2 1 2 1 2 1 2

NewReno 43 44 38 37 33 32 30 29

CUBIC 18 73 23 70 22 71 22 70

Table IV
THROUGHPUT (MBITS/S) FOR PAIR-WISE TESTS AGAINST FLOW 1 =

CCID2 (MEAN OVER 25 RUNS, FROM t = 60s TO t = 300s)

Figure 3. JFI summary of pair-wise inter-protocol behaviour (See Table V)

RTT (ms)
25 50 75 100

Reno 0.94, 0.01 0.93, 0.02 0.91, 0.03 0.92, 0.03

CUBIC 0.93I , 0.01 0.80, 0.09 0.71, 0.14 0.69J , 0.15

RTT (ms)
125 150 175 200

Reno 0.90, 0.05 0.90, 0.05 0.88, 0.05 0.86, 0.09

CUBIC 0.72, 0.14 0.79, 0.11 0.76, 0.13 0.78, 0.13

Table V
〈JFI, CV〉 VALUES FOR PAIR-WISE TESTS AGAINST CCID2 (MEAN OVER

25 RUNS, FROM t = 60s TO t = 300s) (SEE FIGURE 3)



This behaviour is to be expected: as the RTT (and so

the BDP) increases, from Table III, it can be seen that,

although flows become poorer at consuming capacity at higher

RTT values, CUBIC and NewReno achieve higher throughput

than CCID2 as RTT increases. So the unfairness observed in

Figure 3 may not necessarily be a concern. Note, however, that

as the RTT increases beyond ∼125ms, the fairness improves

as CCID2 throughput increases.

In the case of CUBIC, we see from Figure 3 and Table

V that JFI ≤ 0.8 at all values of RTT above 25ms, i.e. there

would appear, at first sight, to be varying degrees of unfairness

between CUBIC and CCID2. In Table IV, we see that CUBIC

always has a higher throughput than CCID2.

B. Assessing relative capability

It is not sufficient to consider only the JFI of the pair-wise

tests in order to make a true assessment of fairness. We must

also consider that CUBIC is designed for high BDP paths,

whereas CCID2 is designed to exhibit “TCP-like” behaviour.

So, we must take into account the likely throughputs under

circumstances where they may be competing equally with the

other flow in the experimental run. Is the higher throughput of

the CUBIC flows due simply to that protocol using the capacity

that CCID2 is not able to use effectively at higher BDPs?

We can answer this question by comparing the mean

throughput figures in Table IV (which records the mean

throughputs of the pair-wise experiments) and Table III (which

records the mean throughputs of two flows of the same

protocol). So, we are trying to assess fairness not just by

looking at the JFI values, but also by comparing the protocol

performance of CCID2 against a protocol with which it has

very fair behaviour at all RTTs, i.e. itself.

We first consider CUBIC at RTT=25ms. Recall that in

our pair-wise experiments, Flow 1 is always CCID2. So we

compare the Flow 1 values in Table III for CCID2, and

the values at the same RTT in Table IV. We find that at

RTT=25ms, the throughputs of both CCID2 and CUBIC are

similar: CCID2 (the cell in Table III marked A) is 43Mb/s, and

CUBIC (the cell in Table III marked B) is 52Mb/s; CCID2 (the

cell in Table IV marked E ) is 39Mb/s, and CUBIC (the cell in

Table IV marked F ) is 55Mb/s. So, there is very good fairness.

The JFI value is 0.93 (the cell in Table V marked I), however

it does not really reflect the relative performance of each flow.

For CUBIC at RTT=100ms, we find that the throughputs

of both CCID2 and CUBIC are very different: CCID2 (the

cell in Table III marked C) is 45Mb/s, and CUBIC (the cell in

Table III marked D) is 48Mb/s; CCID2 (the cell in Table IV

marked G) is 17Mb/s, and CUBIC (the cell in Table IV marked
H ) is 73Mb/s. It seems clear that in this case, the “non-TCP-

like” behaviour of CUBIC has a detrimental effect on the end-

to-end throughput of CCID2: CUBIC is being more aggressive

than CCID2 and causing unfairness. The JFI value of 0.69 (the

cell in Table V marked J) does show some unfairness, but it

does not make clear the relative magnitude of unfairness: the

CCID2 throughput is much less than half of what it would be

against another CCID2 flow.

C. NRU analysis

For NRU, we use weights wn generated as explained in

Section V-A. Of course, plotting the set of values {Un(t)}
would show details of the performance for each flow, but in

order to make a comparison with JFI, we choose to show

system-wide summaries based on the NRU.

For each pair-wise test, we produce NRU tuples in Table

VI, with values plotted in Figure 4. Note with only 2 flows,

the SN value is not meaningful, and so we plot the tuple

〈UN+,UN ,UN−〉, where UN is the mean of the values in the

set {Un}. For a larger number of flows, we may choose

other visualisations, as appropriate, e.g., to plot the tuple

〈+SN/2,UN ,−SN/2〉, or to use a box-and-whisker plot with

the set of flow NRU values.

(a) NewReno vs CCID2

(b) CUBIC vs CCID2

Figure 4. System NRU of pair-wise inter-protocol behaviour (See Table VI)

Considering the indicators in Table II, we see that most

of the NRU tuples in Table VI are of Case B (to 1dp, the

NRU tuple for CUBIC at RTT=25ms is Case C). However, at

t = 125ms for NewReno, there were no positive NRU values,

so UN = UN−, which gives Case A. The JFI plot in Figure 3

cannot give such information.

Note that because we have only two flows, we can see

instantly the range of performance values. For example, taking

the case for CUBIC at RTT=100ms, in Table VI, we see that

UN− = −4.24, so clearly one of the flows has less than half

the capacity it would expect, while UN+ = 2.00 shows that one

of the flows has much greater capacity than it would expect.

The use of the deciBel notation for NRU allows easy

inspection of relative performance from the NRU graphs. If



RTT (ms)
25 50 75 100

NewReno 〈0.84,−1.29,6.66〉 〈0.91,−1.43,6.35〉 〈0.83,−1.48,5.01〉 〈1.15,−1.81,6.31〉
CUBIC 〈0.06,−0.40,1.93〉 〈1.53,−2.58,5.50〉 〈2.00,−4.27,3.80〉 〈2.00,−4.24,3.83〉

RTT (ms)
125 150 175 200

NewReno 〈−,−0.27,1.23〉 〈0.54,−0.77,8.13〉 〈0.50,−0.93,4.69〉 〈0.68,−1.21,5.06〉
CUBIC 〈1.90,−3.73,4.37〉 〈1.80,−3.23,5.00〉 〈1.75,−3.10,5.06〉 〈1.80,−3.31,4.79〉

Table VI
NRU TUPLES FOR PAIR-WISE TESTS AGAINST CCID2 (MEAN OVER 25 RUNS, FROM t = 60s TO t = 300s AND te = 60s) (SEE FIGURE 4)

we compare the value of UN (the middle line) in each graph

of Figure 4 with the corresponding lines for each of the two

protocols in Figure 3, we see that, as a system-wide mean, the

NRU shows better fairness between CCID2 and the other flows

than seen using JFI, reflecting better the relative capability of

each protocol, and the consistency of the behaviour in the

flatter line of each graph in Figure 4 compared to Figure 3.

The NRU tuple and the NRU plot allow us to see clearly the

range of NRU values (the top and bottom of the vertical bars).

D. Convergence times

Table VII shows convergence times. The epoch, te, was

taken as t = 30s, i.e. the time that the second flow was

introduced. We see here that while NewReno is more likely

to converge to fairness than CUBIC, the latter appears to do

so more quickly than NewReno. However, we also know that

CUBIC shows greater unfairness to CCID2 than NewReno,

and so the convergence is likely to be short-lived (which

is confirmed on visual inspection of the plotted data for

individual flows, and is not presented here).

RTT (ms)
25 50 75 100 125 150 175 200

NewReno 109 208 - 157 121 62 198 172

CUBIC 71 157 61 84 - - 61 62

Table VII
CONVERGENCE TIME (TU ) (SECONDS) VALUES FOR PAIR-WISE TESTS

(MEAN OVER 25 RUNS, FROM t = 60s TO t = 300s)

E. Larger numbers of flows

We now show the use of the NRU with larger numbers

of flows. Note that these simulation results should not be

considered as rigorous as those for our pair-wise tests above:

our focus is to show the characteristics of the NRU and the

actual protocols used are not important.

We simulated a 14-flow system using ns2 patched with the

ns2 Linux extension from [17], allowing Linux kernel code

for different transport protocols to be executed from within

ns2. We used 14 different TCP variants, one of each type

supported by [17]. We used the same scenario and topology as

for our testbed albeit with 14 senders and 14 receivers. Flows

were started at 30s intervals (from t = 0) until all flows were

active. The simulation lasted for 900s and we analysed data

points from t = 420s to t = 900s in order to avoid any start-up

artefacts from the flows. Table IX, Table VIII and Figure 5

shows the JFI and system NRU values (plotted as the tuple

〈UN+,UN ,UN−〉) for the 14 variants. The NRU weights were

calculated in a similar fashion to that for our testbed, i.e. using

a run of 14 flows of the same type. We conducted only a single

run of the simulation in each case.

RTT (ms)
25 50 75 100 125 150 175 200

JFI 0.51 0.30 0.25 0.24 0.22 0.20 0.20 0.19

Table VIII
JFI VALUES FOR 14 FLOWS (SINGLE RUN) (SEE FIGURE 5(A))

When we compare the JFI graph and NRU graph in Figure

5, we see that the JFI shows the system becoming increasingly

unfair as the RTT increases, but the NRU shows that the

system fairness improves after 100ms, as we take into account

the relative capability of each protocol flow at those higher

BDPs. Also, JFI depicts unfairness but masks the relative

magnitude of reduction in performance, an aspect which is

clearly visible in the NRU values (Table IX). Again, with

reference to Table II, we have NRU tuples that are of both

Case A and of Case B (to 1dp, the tuple at t = 125ms is Case

C), a distinction that JFI cannot make.

VII. CONCLUSION

We have shown a simple approach to making richer assess-

ments of inter-flow fairness using end-to-end measurements of

flow throughput. Compared to the the use of Jain’s Fairness

Index (JFI), our approach, which defines the Normalised

Resource Usage (NRU) for a flow, uses weights for each flow

which reflect its relative capability. NRU tuples can be used

to show the range of NRU values, which can indicate whether

flows are performing better or worse than they might on the

same network path but with like flows. NRU allows assessment

of per-flow fairness as well as system-wide fairness. Apart

from the evaluation of the weights, the cost in measurement

is the same as would be if using JFI. Indeed, it would be

possible to evaluate the NRU retrospectively if data were

already available from previous studies and a suitable testbed

could be found to generate the weights. We also define a use of

the NRU to assess system stability in terms of the Coefficient

of Variance of the flow data, and convergence times for flows.

We demonstrated the use of the metric with a rigourous

testbed study of three protocols (TCP NewReno, CUBIC and

DCCP/CCID2), and a multi-flow simulation. We compared

a NRU-based analysis with an analysis based on the use of

JFI, showing the richer information provided by the NRU.

Although we chose to use end-to-end throughput for our eval-

uation, the NRU could be used with other flow performance

measures, such as end-to-end delay for a data transfer, or cost.



RTT (ms)
25 50 75 100

〈−,−10.51,3.21〉 〈−,−11.70,1.94〉 〈−,−12.28,1.80〉 〈−,−12.97,1.68〉

RTT (ms)
125 150 175 200

〈0.02,−15.57,2.56〉 〈0.10,−16.98,1.57〉 〈0.10,−17.74,2.88〉 〈0.10,−18.47,2.44〉

Table IX
SYSTEM NRU TUPLES FOR 14 FLOW TEST IN NS2 (SEE FIGURE 5)

(a) JFI (See Table VIII)

(b) System NRU (See Table IX)

Figure 5. System NRU of 14-flow inter-protocol behaviour

A. Limitations

The NRU’s key benefit, the use of weights that provide

the assessment of relative capability, is potentially also a

limitation of the method. The key question is “How do we

find appropriate values for the weights?” Our approach, with

two flows and 14 flows, has used calibration runs in order

to assess what each flow would achieve if competing with

itself. Unfortunately, the use of calibration runs does not scale

well as the number of flows increases. However, it should

be possible to use other techniques to estimate the weights

as the need arises, and the exact nature of the approximation

is likely to be dependent on the system set-up. Meanwhile,

it is to be noted that most studies in the literature typically

make experimental assessments with small numbers of flows,

e.g. two flows (as we have done), and so for such purposes,

our methodology is quite suitable and provides more accurate

evaluation of performance than JFI.

A further limitation is that it is known that the Coefficient

of Variance (CV), used for Sn, becomes highly sensitive with

small values. So, for small values, Sn may give an inaccurate

measure of instability.
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